SITZUNG VOM 5. NOVEMBER 1857.

Vorträge.

Untersuchungen über die physicalischen Verhältnisse krystallisirter Körper.

 Orientirung der optischen Elasticitätsaxen in den Krystallen des rhombischen Systems.

(Mit 7 Tafeln.)

Von Jos. Grailich und Victor v. Lang.

(Vorgelegt in der Sitzung vom 12. Juni 1857.)

1. Wir legen hiermit den ersten Abschnitt einer ausführlicheren Untersuchung krystallisirter Körper in Beziehung auf ihre physicalischen Verhältnisse vor.

Wenn die Mineralogie nicht blos die Bestimmung haben soll, Anleitung zum Erkennen der einzelnen unorganischen Naturproducte zu geben, sondern überhaupt den Inbegriff der sämmtlichen Merkmale, welche dem unveränderten Naturproducte inwohnen, darzubieten, so wird mit dem Fortschritte der Hilfswissenschaften, und eine solche ist in gewisser Beziehung die Physik für die Naturgeschichte des Mineralreiches auch der Massstab, der in der Terminologie, Charakteristik und Physiographie gilt, ein anderer werden müssen. Die Mittel, welche die heutige Physik der Untersuchung der Körper darbietet, sind seit wenigen Jahrzehnten um so viel reicher geworden, dass eine terminologische Revision der Krystalle eine reiche Ernte neuer Thatsachen verspricht, welche sowohl der systematischen Naturgeschichte als auch der Kenntniss der Wechselbeziehung zwischen Substanz, Form und physicalischem Verhalten zu Gute kommen müssen.

2. Wir haben zunächst unsere Aufmerksamkeit den Elasticitätsverhältnissen der Krystalle des rhombischen Systemes zugewendet. Es galt einerseits ein bestimmtes Princip für die Aufstellung der Krystalle dieses Systemes aufzufinden, andererseits zu untersuchen, welche Beziehungen zwischen den körperlichen Dimensionen und den Grenzwerthen der nach diesen orientirten Elasticität des Äthers stattfinden.

Was den ersten Punkt betrifft, so haben wir die Krystalle sämmtlich optisch parallel gestellt. Bekanntlich ist es gleichgiltig, welche von den drei auf einander senkrechten Krystallaxen aufrecht, welche nach rechts und links, nach vorn und hinten gerichtet wird, und es haben auch in der That verschiedene Mineralogen ein und dasselbe Mineral in den verschiedensten Stellungen gezeichnet. Wir brauchen nur an das Beispiel des Schwerspathes zu erinnern, der von Hauy, Mohs, Neumann, Quenstedt, Miller, Dana, fast in allen möglichen Lagen repräsentirt wird. Es ist somit erlaubt, irgend ein Princip bei der Aufstellung zu wählen, welches der Darstellung einen grösseren Inhalt verleiht, ohne an dem bisher Gebotenen etwas zu verringern.

Wir schlugen hiezu folgenden Weg ein: In jeder unserer Zeichnungen ist die Richtung von rechts nach links die der kleinsten, die von vorne nach hinten die der mittleren, die von oben nach unten die der grössten Elasticität; so dass die Aufstellung sogleich die optische Orientirung gibt und die Coordinatenebene der XZ zugleich die Ebene der optischen Axe ist. Die einzelnen Flächen sind nach Miller's Methode bezeichnet, jedoch mit consequentem Festhalten an der Regel, dass in dem Symbole (hkl), h sich auf die längste, k auf die mittlere, l auf die kürzeste Krystallaxe bezieht; so dass die Flächenbezeichnung die morphologische Orientirung darbietet. Die Symbole (okl), (hol), (hlo) bezeichnen daher immer Prismen, deren Axen parallel der längsten, mittleren und kleinsten Krystallaxe, die Symbole (100), (010), (001) Pinakoide, deren Flächen rechtwinklig gegen die entsprechenden Krystallaxen gerichtet sind. Man hat es bisher immer vorgezogen, die Richtung, nach welcher der Krystall am längsten anwächst, aufrecht zu stellen; aber einmal lässt sich dies mit Consequenz nicht durchführen, sobald das Mineral in verschiedenen Combinationen nach verschiedenen Richtungen sich ausdehnt; andererseits bleibt die herrschende Richtung aus der

Zeichnung ja immer noch erkennbar und kann die Aufstellung dazu verwendet werden, etwas auszusprechen, was die blossen räumlichen Dimensionen nicht auszusagen vermögen. Wir haben ausserdem die Symbole der Flächen, nach welchen Theilbarkeit stattfindet, durch Klammern von den übrigen unterschieden.

Es lässt sich nicht leugnen, dass einer durchgreifenden Aufstellung und Bezeichnung nach den dargestellten Grundsätzen sich manche Schwierigkeiten entgegensetzen.

Ein erster Einwurf ist, dass sie durchsichtige Körper voraussetzt. Wir könnten dagegen einwenden, dass in der Untersuchung der Reflexionserscheinungen das Mittel geboten ist, auch für metallische Krystalle die entsprechende Orientirung zu gewinnen; aber wie die Beobachtungsmittel und die Objecte bis jetzt beschaffen sind, so wird diese Art der Bestimmung wohl noch geraume Zeit nicht angewandt werden können. Wir wollen uns auch nicht auf die Hoffnung stützen, dass aus einer Reihe von fortgesetzter Untersuchung das Mittel gewonnen werden wird, aus anderen als den optischen Erscheinungen die Orientirung der letzteren zu erschliessen; obschon gegen diese Erwartung gewiss nichts einzuwenden wäre und wir in nächster Zeit über die Möglichkeit oder Unmöglichkeit ihrer Realisirung uns nähere Auskunft erholen werden. Wir glauben aber, dass es schon ein Vortheil ist, wenigstens für die durchsichtigen Krystalle eine Aufstellung zu besitzen, die so viel mehr aussagt als die bisherige willkürliche.

Ein zweiter Einwurf wird durch das Auftreten von Substanzen geboten, die die merkwürdige Eigenthümlichkeit zeigen, dass die Ebene der optischen Axen für rothes Licht senkrecht steht auf der Ebene der optischen Axen für blaues. Diesem wird aber begegnet durch die Feststellung, dass die Orientirung ein für alle Mal sich nur auf die Lage der Elasticitätsaxen für rothes Licht bezieht. Auch die Bemerkung, dass die Richtung der Elasticitätsaxen wesentlich von der Temperatur abhängig sei, scheint kaum von praktischer Schwierigkeit; einmal sind die Änderungen, welche durch Wärmezuder Abnahme bedingt werden, so gering, dass es einer gewaltigen Temperatur-Revolution auf Erden bedürfte, bis die Elasticitätsaxen ihre Stellungen vertauschten, einer Revolution, welche höchst wahrscheinlich allen Streit um menschliche Meinungen für immer schlichten müsste; andererseits stehen wir noch zu sehr am Eingang zur

Erkenntniss dieser Verhältnisse, als dass wir jetzt schon jeden Versuch durch künftige, mögliche Schwierigkeiten paralysiren lassen dürften.

3. Um die Vergleichung zwischen der Orientirung der Krystallund Elasticitätsaxen durchführen zu können, haben wir eine symbolische Bezeichnung gewählt, welche kurz und deutlich die gegenseitige Beziehung ausdrückt.

Indem wir jederzeit durch a, b, c die drei Krystallaxen so bezeichnen, dass

und entsprechend die drei Elasticitätsaxen durch a, b, c, wo wieder

$$a > b > c$$
;

deuten wir die Richtung der letzteren im Krystalle durch ein Symbol an, in welchem die Elasticitätsaxen in der Folge angeführt werden, wie sie der grössten, mittleren und kleinsten Krystallaxe entsprechen. So bedeutet z. B. das dem Terpentinölhydrat eigenthümliche Symbol

dass die mittlere Elasticitätsaxe parallel der längsten, die kleinste Elasticitätsaxe parallel der mittleren, die grösste Elasticitätsaxe parallel der kürzesten Krystallaxe gerichtet ist; in den Krystallen der isomorphen Gruppe des Schwerspathes fallen, wie das Symbol

ausdrückt, die Richtungen der grössten, mittleren und kleinsten Elasticitäts- und Krystallaxen zusammen, während im oxalsauren Ammoniak, dem weinsauren und traubensauren Natron-Ammoniak, dem essigsauren Cadmiumoxyd- und Magnesia-Uranoxyd, dem Kalium- und Ammonium-Quecksilberchlorid, dem Milchzucker u. s. w. das Symbol

die gleiche Richtung der mittleren und die entgegengesetzte der grössten und kleinsten Axen der beiden Ordnungen ausdrückt.

Wir haben in das Symbol noch eine weitere Charakteristik aufgenommen. Je nachdem nämlich der optische Charakter im spitzen Winkel der optischen Axen positiv oder negativ ist, entspricht der ersten Mittellinie der optischen Axen die kleinste oder grösste Elasticitätsaxe. Wir können zwar auf den sogenannten optischen

Charakter bei zweiaxigen Krystallen keinen besonderen theoretischen Werth legen, da er eben nur die Bedingung

$$a^2 - b^2 \ge b^2 - c^2$$

ausspricht, was unsere Kenntniss über die wirklichen Grössenverhältnisse nicht wesentlich fördert; um so brauchbarer wird aber dies Merkmal, wenn es zur naturhistorischen Unterscheidung benützt wird, da es leicht und sicher zu ermitteln ist. Wir haben desshalb bei positiven Krystallen in dem Axenschema ein Pluszeichen unter das c', bei negativen ein Minuszeichen unter das a gesetzt, zum Zeichen, dass die entsprechende Elasticitätsaxe erste Mittellinie der optischen Axe ist. So zeigt

dass im kohlensauren und äpfelsauren Kalk die Elasticitätsaxen dieselbe Orientirung gegen die entsprechenden Krystallaxen besitzen, dass aber im Aragonit die grösste, im äpfelsauren Kalk die kleinste Elasticitätsaxe erste Mittellinie der optischen Axen ist. Will man daher aus Aragonit und aus äpfelsaurem Kalk Platten schneiden, welche die Axen zeigen, so ist Aragonit senkrecht gegen die aufrechte, äpfelsaurer Kalk senkrecht gegen die Krystallaxe, die in unserer Zeichnung von rechts nach links liegt, anzuschleifen.

Um dies Verhältniss auch in der Zeichnung anzudeuten, haben wir bei positiven Krystallen ein

ç,

bei negativen ein

a

an die entsprechenden Axenenden gesetzt.

Die Einführung dieser Symbole gewährt noch manche andere Erleichterung. So wurden bisher die Absorptions- und pleochromatischen Verhältnisse nach den Krystallaxen oder den Mittellinien der optischen Axen, ohne Rücksicht auf den optischen Charakter, orientirt, während sie eigentlich doch nach der Natur der Sache auf die Elasticitätsaxen zu beziehen sind; bezeichnen wir durch

$$e^{-ap}$$
 e^{-bp} e^{-cp}

die Absorptionsgrössen für die Vibrationen parallel den Elasticitätsaxen α , β , c (wo e die Basis der natürlichen Logarithmen ist, und

g, g, g die Absorptionscoëfficienten, p die Krystalldicken sind), so kann man unmittelbar ausdrücken, welche Strahlen die meist absorbirten sind. So finden wir z. B. für Euchroit

$$a > b > c$$
,

d. i. die Strahlen werden um so mehr absorbirt, je weniger sie abgelenkt werden (im directen Widerspruch mit dem sogenannten Babinet'schen Gesetze) 1); für Chlorit und Glimmer

$$(\mathfrak{h} > \mathfrak{c}) > \mathfrak{a}$$

- d.i. die Strahlen mittlerer Geschwindigkeit erfahren grössere Schwächung als die der kleinsten Geschwindigkeit, beide aber werden ungleich mehr absorbirt, als die Strahlen, welche mit der grössten Geschwindigkeit den Krystall durchschreiten.
- 4. Ausser der Orientirung der Elasticitätsaxen wurde noch die Messung der scheinbaren Winkel der optischen Axen ausgeführt. Wir berücksichtigten diese vorzüglich wegen ihrer Brauchbarkeit zur Bestimmung mancher Species. So gibt es vielleicht kein Mittel zur rascheren und sichereren Unterscheidung von Schwerspath und Cölestin als die Herstellung von Platten, welche die optischen Axen zeigen, wie wir aus eigener Erfahrung kennen gelernt haben.

Die Methoden, deren wir uns bei unserer Untersuchung bedienten, sind von einem von uns an einem anderen Orte ausführlich

für roth
$$\mathfrak{g} = \mathfrak{h} = \mathfrak{g}$$

" gelb $(\mathfrak{g} = \mathfrak{g}) < \mathfrak{h}$
" blau . . . $\mathfrak{g} = \mathfrak{h} = \mathfrak{g}$
" violet . . . $\mathfrak{g} > \mathfrak{g} > \mathfrak{h}$

kurz man sieht, die Absorption ist eben so sehr Function der Fortpflanzungsgeschwindigkeit (gegeben durch die verschieden orientirte Elasticität) als der Wellenlänge, was übrigens durch theoretische Betrachtungen vollkommen zu rechtfertigen ist, wenn diese auch vorerst noch nicht jenen Grad von Evidenz erreicht haben, um in gleicher Reihe mit den Belegen der Beobachtung eintreten zu können.

¹⁾ Der Pleochroismus ist vielmehr ein Beweis dass die Absorption in keinem directen und einfachen Verhältnisse zur Elasticität steht, als dass das Gegentheil stattfindet. Denn wenn auch in vielen Fällen die zu a, b, c gehörigen Bilder wirklich deutlich an Lichtstärke unterschieden sind, so zeigt doch die fast immer vorhandene Farbenverschiedenheit, dass die Vibrationen verschiedener Wellenlänge nicht in gleichen Verhältnissen absorbirt werden, sondern dass, während a für den einen Theil des Spectrums die grösste Amplitudenverringerung aufweist, diese für b und c in andere und andere Stellen des Spectrums entfällt. Daher kommt es, dass bei reichfärbigem Pleochroismus die Unterscheidung der Intensitäten im Allgemeinen eine wahre Unmöglichkeit wird, und man höchstens für einzelne Farben die obengewählte Bezeichnungsweise anwenden könnte. So wird z. B. der rosenrothe Topas aus Brasilien

dargelegt worden. Hier haben wir nur noch einige Worte bezüglich der Präparate und der Redaction des Beobachtungsmaterials hinzuzufügen.

Um die Krystallschliffe aufzubewahren, wurden sie mit einem passenden Kitt zwischen plane Gläschen eingeschlossen und hierauf in quadratische Schnitte von Pappe von einem Zoll Seite gebracht, in deren Mitte eine kreisrunde Öffnung ausgeschlagen worden. Das Präparat liegt so in dem Rahmen, dass die Ebene der optischen Axen parallel ist einer der vier Quadratseiten; der Rahmen selbst wird oben und unten durch die Zeichnung der Projection des Krystalles auf die Ebene, welche angeschliffen ist, bekleidet. So aufbewahrt bleibt das Präparat immer ein lehrreiches Object und kann noch später zu weiteren Untersuchungen verwendet werden.

Bevor wir unsere Beobachtungen schliesslich redigirten, wurde von jeder der angeführten Substanzen noch ein Probeschnitt ausgeführt, um uns von der Richtigkeit der Angaben in unserem Arbeitsjournal zu überzeugen.

Endlich haben wir noch unsern Dank für die zuvorkommende Liberalität auszusprechen, mit welcher wir von allen Seiten unterstützt wurden. Herr Regierungsrath von Ettingshausen und Herr Custos Dr. Moriz Hörnes stellten uns die Mittel der Anstalten zu Gebote, deren Chefs sie sind; Herr Sectionsrath Haidinger, Herr Prof. Schrötter, Herr Prof. Redtenbacher und Herr C. R. v. Hauer die chemischen Präparate, welche den grösseren Theil unseres Materials bilden. Für zahlreiche wohlausgebildete Krystalle sind wir auch den Herren Weselsky, Schafařik, Seybl und Lieben zu Dank verpflichtet.

Nur dieser Vereinigung von wohlwollender Theilnahme ist es zuzuschreiben, dass wir diese Untersuchungen in etwas weiteren Dimensionen beginnen konnten.

Bezüglich der folgenden speciellen Aufzählung ist zu bemerken:

^{1.} Die Axenlängen sind für chemische Präparate der "Krystallographischen Chemie" von Rammelsberg entnommen; die Grössen a,b,c sind dabei umgestellt, da wir jederzeit a>b>c setzen: in der Angabe der Krystallflächen beziehen sich die durch Buchstaben ausgedrückten Flächensymbole auf die Zeichnungen Rammelsberg's, die durch Ziffern gegebenen Symbole auf das Axensystem a:b:c. Bei

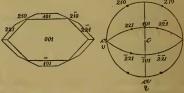
Mineralien wurden, wo nicht eigene Messungen die Axenlängen bestimmten, die von Dana in der vierten Auflage des System of Mineralogy angeführten Grössen, so wie die neuesten Angaben von Kokscharow's der optischen Orientirung zu Grunde gelegt. Wo die Axenlängen ohne Angabe der Quelle und ohne Bezugnahme auf eigene Messungen angeführt werden, sind sie dem Werke: "Krystallographisch-optische Untersuchungen" entnommen, welches, von einem von uns verfasst, so eben die Presse verlässt.

2. Die Holzschnitte im Text stellen die Projectionen der untersuchten Krystalle auf eine Ebene dar, die normal steht auf der ersten Mittellinie der optischen Axen: es ist die Ebene, nach welcher die Krystalle geschnitten werden müssen, um beide Axen zu zeigen. Neben die Flächenprojection ist die Zonenprojection in Miller's Weise gesetzt und es ist in beiden die Ebene der optischen Axen von rechts nach links orientirt; die Buchstaben a, c zeigen die Pole der betreffenden Elasticitätsaxen auf der Sphäre der Projection an.

I. Brookit TiO2.

Krystalle aus Snowden, Nordwales. — K. k. Hof-Mineralien-Cabinet.

Taf. 4, Fig. 7.


Es sind die bekannten ausgezeichneten tafelförmigen Krystalle, Combinationen mehrerer rhombischen Pyramiden und Prismen mit dem herrschenden Makropinakoid.

Nach v. Kokscharow (Materialien zur Min. Russlands, Bd. I, S. 61) ist

$$a:b:c=1:0.94438:0.84158.$$

Die Ebene der optischen Axen für rothes Licht liegt, entsprechend den Beobachtungen Beer's (Pogg. 82, 436) senkrecht zur

Streifung des Pinakoides. Beer gibt an, dass der Axenwinkel so klein sei, dass im Polarisationsmikroskope noch beide Axen für sämmtliche Farben ins Gesichtsfeld fallen.

Wir waren in der Lage, eine Reihe ausgezeichneter Krystalle von verschiedener Dicke untersuchen zu können und überzeugten uns, dass die Dispersion der Axen für verschiedene Farhen so beträchtlich ist, dass die Ebene der Axen für grünes Licht sich parallel zur Streifung der Krystalle stellt. Bei dickeren Krystallen ist diese Beobachtung schwerer festzustellen, da wegen der Absorption der dem violeten Ende des Spectrums genäherten Strahlen Blau gänzlich und Grün zum grössten Theile verschwindet und eben nur die dem rothen Ende des Spectrums genäherten Farben die Erscheinung der Axenringe darbieten. Dünne, helle, fast blonde Lamellen lassen dagegen keinen Zweifel an dieser Orientirung, welche dann auch bei dickeren Krystallen bei aufmerksamer Betrachtung bemerkbar wird. Der Charakter der Doppelbrechung ist positiv für alle Farben: man erhält somit als Axenschema

Der scheinbare Winkel der optischen Axen für Roth beträgt ungefähr 65°; für Grün kann er kaum 10° ausmachen. Wäre Blau und Violet nicht absorbirt, so würde das Polarisationsbild ganz mit dem des mellithsauren Ammoniaks übereinstimmen und in der That wird auch die Ähnlichkeit um so auffallender, je dünner die untersuchten Platten sind. Einen Unterschied bedingen nur die Dimensionen, da der Axenwinkel für rothes Licht hier um so viel grösser ist, als an der honigsteinsauren Verbindung. Der Gesammtbetrag der Dispersion der optischen Axen macht somit beim Austritte in die Luft über 70 Grade aus.

Die Farbe des Brookites ist, je nach seiner Dicke von hellblond bis dunkelbraun; die Durchsichtigkeit hat ein Ende schon bei einer Dicke von anderthalb Millimeter. Die Farbe ist

a zimmtbraun,b nelkenbraun,c nelkenbraun

und die relative Absorption

d. i. da gegenüber dem rothen und gelben Lichte alles andere nahezu verschwindet.

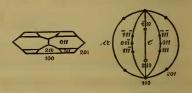
$$\mathfrak{h} > \mathfrak{g} > \mathfrak{g}$$
.

2. Chlorbaryum BaCl + 2HO.

Taf. 1, Fig. 4.

Krystalle aus Herrn Prof. Schrötter's Laboratorium.

Die bekannte von Kobell beschriebene Combination. Da nach den Messungen dieses Krystallographen


$$a:b:c=1:0.6338:0.6068$$
,

so erhalten die Flächen unseres Krystalles folgende Symbole

$$p(011)$$
, $q(110)$, $q/2(210)$, $r(101)$, $r/2(201)$, $c(100)$.

Die Theilbarkeit ist nach (100), (010), (001) fast gleich gross. Zwillingsfläche die Basis (001).

Die Ebene der optischen Axen fällt in den brachydiagonalen Hauptschnitt: (Beer, Einl. in d. höh. Opt. 388, gibt dem entsprechend die längste Krystallaxe als optische Normale an). Die erste Mittellinie paral-

lel der mittleren Krystallaxe; Charakter positiv. Also Axenschema

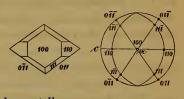
Scheinbarer Winkel der optischen Axen = 75° 15′ in Öl, folglich 128° 6′ beim Austritte in die Luft¹). Die Dispersion der Axen sehr gering: doch scheint der Winkel der Axen für rothes Licht grösser zu sein als für blaues.

Die Krystalle sind tafelförmig durch Verkürzung in der Richtung der längsten Krystallaxe = mittleren Elasticitätsaxe.

3. Quecksilberchlorid HgCl.

Krystalle aus Herrn Prof. Schrötter's Laboratorium.

a:b:c=1:0.9186:0.6664 Mitscherlich. (In Rammelsberg's Kryst. Chemie S. 51 ist das Verhältniss der beiden Diagonalen des Prisma durch ein Versehen 1.7254:1, statt 0.7254:1 = sin. 35°58': sin. 54°2'5 angegeben.)


¹⁾ Wir fanden für das Mandelöl, dessen wir uns bei den Messungen bedienten,

 $[\]mu^{\text{in}} = 1.4709$

 $[\]mu^{18} = 1.4723$

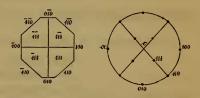
Die ausgezeichnete Theilbarkeit nach (110), so wie der unvollkommene Blätterdurchgang nach (100) macht die Untersuchung sehr

lästig; dazu kommt noch die nie fehlende innere Zersplitterung und zellenweise Resorption der Krystalle, welche es unmöglich macht, auch nur mit annähernder Sicherheit eine Platte senkrecht zur Längenrichtung des Prisma (011) herzustellen.

Die Ebene der optischen Axen liegt in dem makrodiagonalen Hauptschnitte; die Axe a ist erste Mittellinie. Es scheint, dass der Charakter negativ ist, also

a c b.

- 4. Magniumchlorid-zweifach Cadmiumchlorid. Taf. 1, Fig. 2.
 - 5. Nickelchlorid-zweifach Cadmiumchlorid. Taf. 1, Fig. 1.
 - 6. Kobaltchlorid-zweifach Cadmiumchlorid. Taf. 1, Fig. 3.


$$RCl + 2CdCl + 12HO$$
.

Krystalle von Hrn. K. R. v. Hauer dargestellt. Sitzb. W. Ak. 17. Bd., S. 340.

$$a:b:c=1:0.9126:0.3431.$$

(S. Krystallographisch-optische Untersuchungen.)

Die Ebene der optischen Axen fällt in den makrodiagonalen Schnitt des herrschenden Prisma. Erste Mittellinie die Prismenhauptaxe (kleinste Krystallaxe); Charakter positiv. Also Axenschema

abç.

$$\mu^{\circ} = 1.4731$$
 $\mu^{\circ} = 1.4747$

$$\mu^{\text{e}} = 1.4759$$

Die Buchstaben U. B. C. D. G beziehen sich auf die Linien im Spectrum des salpetrigsauren Gases. Vergl. kryst. opt. Unters. p. 19. Winkel der optischen Axen beträchtlich: für Kobaltchlorid — zweifach Cadmiumchlorid 78°8′ in Öl, also 136° 20′ beim Austritt in die Luft. Die Platten, welche wir von den beiden andern isomorphen Verbindungen anschliffen, änderten sich so rasch, dass es zwar möglich war, die Lage der Axen und den optischen Charakter zu ermitteln, aber nicht die Neigung der scheinbaren Axen. — Dispersion der Axen unbeträchtlich; doch $\rho > \nu$.

Die Absorptionsverhältnisse zeigen nur wenig bemerkenswerthes: die Magniumverbindung ist farblos, die Nickelverbindung gesättigt berggrün und dabei

$$\varsigma > \frac{\mathfrak{g}}{\mathfrak{b}}$$
,

die Kobaltverbindung nelkenbraun und dabei

ohne dass es jedoch möglich wäre selbst bei sehr dicken Platten diese Intensitätsunterschiede mit grosser Deutlichkeit festzustellen.

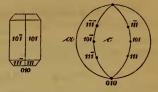
Die Krystalle wachsen in der Richtung der kürzesten Krystallund Elasticitätsaxe.

- 7. Kaliumquecksilberchlorid. Taf. 1, Fig. 5.
- 8. Ammoniumquecksilberchlorid. Taf. 1, Fig. 8.

$$RCl + HgCl + 2HO$$
.

Krystalle von Herrn Sectionsrath Haidinger aus der Böttger'schen Sendung.

Wir fanden

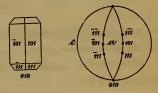

$$(101)$$
 $(\overline{1}01) = 109^{\circ} 15'$
 (101) $(10\overline{1}) = 71^{\circ} 15'$.

Gewöhnlich spiegelte eine schmälere Fläche ausgezeichnet, während die breitere unterbrochen, rissig und grubig aussieht. Gleichwohl konnten wir keine entscheidende Theilbarkeit wahrnehmen. — Aus Rammelsberg's Messungen ergibt sich

$$a:b:c=1:0.7751:0.7143.$$

Die Krystalle zeigen eine optische Axe schon in der Turmalinzange; die Axen stehen somit nahezu senkrecht auf der Prismenfläche,

und die Ebene der optischen Axen fällt für beide Substanzen in den Querschnitt des herrschenden Prisma, also Längsaxe des Prisma zweite Elasticitätsaxe.



Das Ammoniumqueeksilberchlorid zeigt die beiden Axenbilder bei einem Schnitte senkrecht gegen die Makrodiagonale; diese ist somit erste Mittellinie, und da der Charakter positiv, dritte Elasticitätsaxe; somit Axenschema

çba.

Scheinbarer Axenwinkel: 51° 25′ in Öl, also 78° 24′ beim Austreten in die Luft. Dispersion sehr beträchtlich. Axenwinkel für roth merklich kleiner als für blau.

Das Kaliumquecksilberchlorid zeigt die beiden Axenbilder bei einem Schnitte senkrecht gegen die Brachydiagonale; diese ist somit erste Mittellinie, und da der Charakter

negativ, erste Elasticitätsaxe; somit Axenschema

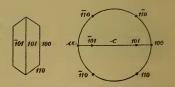
cba.

Scheinbarer Axenwinkel 91° in Öl, also kein Austreten in die Luft wegen Totalreflexion (nämlich bei Platten, die senkrecht zur optischen Axe geschnitten sind; denn die Prismenflächen zeigen auch hier, wenn auch unter anderer Neigung als beim vorigen, die eine optische Axe). Dispersion sehr beträchtlich. Axenwinkel für roth merklich grösser als für blau.

Es sind somit die Elasticitätsaxen in den beiden isomorphen Substanzen gleich gerichtet; nur das Verhältniss der Länge von α: b: c ändert von der einen zur andern so, dass der spitze Winkel der optischen Axen in beiden durch eine andere Elasticitätsaxe halbirt wird.

Die Doppelbrechung sehr heträchtlich für beide. — Vergl. schwefelsaures und einfachehromsaures Kali.

Beide Verbindungen wachsen in der Richtung der mittleren Krystall- und Elasticitätsaxe.


9. Kaliumplatincyanür KPtCy₂+HO+2HO.

Taf. 1, Fig. 10.

Krystalle von H. A. Schafařik und aus Professor Schrötter's Laboratorium.

$$a:b:c=1:0.8795:0.2736.$$

Die Ebene der optischen Axen coincidirt mit dem makrodiagonalen Schnitte des herrschenden Prisma. Erste Mittellinie ist die Prismenhauptaxe, d. i. die kürzeste krystallo-

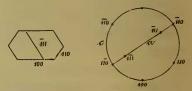
graphische Axe. Der Charakter positiv, folglich Axenschema:

Scheinbarer Winkel der optischen Axen eirea 60° beim Austritt in die Luft.

Die Dispersion und Doppelbrechung sehr bedeutend. Axenwinkel für roth grösser als für violet.

Die Krystalle sind verlängert in der Richtung der kleinsten Krystall- und Elasticitätsaxe.

10. Strontiumplatincyanür SrPtCy₂+HO+2HO.


Taf. 1, Fig. 9; Taf. 7, Fig. 4, 5, 10.

Krystalle von Hrn. A. Schafařik und von H. Ph. Weselsky aus Prof. Schrötter's Laboratorium.

Die Krystalle zeigen die Combination eines Prisma mit dem Brachypinakoid und einem an den Enden aufgesetzten rhombischen Tetraëder. Axenverhältniss:

$$a:b:c=1:0.7158:0.4447.$$

Im polarisirten Lichte zeigt sich ein wunderbarer Reichthum an Zwillingsbildungen, wobei bemerkenswerth ist, dass die Krystalle scheinbar aus dreierlei Individuen sich zusammensetzen.

Zwei derselben geben bei einem Schnitte senkrecht gegen die Längenaxe die Bilder optischer Axen; das dritte erscheint immer nur in dem,

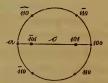
intensiven Stahlblau der Fluorescenz, ohne eine bestimmte Orientirung bezüglich der Elasticitätsaxen zuzulassen. Man könnte geneigt sein, die beiden Axenbilder einem einzigen Individuum zuzuschreiben, zumal da sie symmetrisch gegen den, die Zwillingsbildung andeutenden dunkeln Balken liegen und die Farben wie in dem Bilde eines einzigen Individuums geordnet auftreten. Eine Probe mit der compensirenden Quarzplatte lehrt aber bald, dass die Erweiterung der Ringe für das eine Bild weit über das zweite Axenbild hinauswächst und dieses etwa in die Richtung der Halbirungslinie des eigentlichen Axenwinkels des ersten Individuums entfällt. Hieraus lässt sich die beistehende Construction erschliessen, welche freilich den rhombischen Charakter dieser Verbindung zweifelhaft macht. Indess zeigt dieser Versuch, dass (da der scheinbare Winkel der zwei sichtbaren Axen für die verschiedenen Farben zwischen 30° und 400 liegt und die wahre Mittellinie in diesem Bogen entfällt) da der Schnitt senkrecht gegen die Längenaxe des Prisma schief aber nicht bedeutend von einem rechten Winkel abweichend, gegen die erste Mittellinie geführt ist, welche, da der Charakter positiv gefunden wird, die erste Elasticitätsaxe ist. Da die Ebene der Axen in die Brachydiagonale des Prisma entfällt, so kann vorläufig als Axenschema

Бас

gesetzt werden, bis eine weitere Untersuchung über den krystallographischen Charakter endgiltig wird entschieden haben.

Axendispersion und Doppelbrechung sehr beträchtlich, $ho < \upsilon$.

11. Kaliumlithium-Platincyanür KLi Pt₂Cy₄ + xHO.


Taf. 1, Fig. 11.

Ein Krystall aus Professor Schrötter's Laboratorium.

$$a:b:c=1:0.7173:0.3186.$$

Die Ebene der optischen Axen im makrodiagonalen Hauptschnitte des herrschenden Prisma, Prismen- 300 101 100 hauptaxe erste Mittellinie. Charakter positiv. Also Axenschema

abc.

Scheinbarer Winkel der optischen Axen ungefähr wie beim Schwerspath.

Dispersion deutlich: Axenwinkel für Roth grösser als für Grün.

12. Kaliumtellurbromür KBr+TeBr₂+3HO.

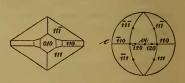
Taf. 1, Fig. 7.

Die Krystalle durch Herrn K. v. Hauer dargestellt.

Ausgezeichnete schön blutrothe grosse Krystalle, gewöhnlich in Form verschobener rhombischer Pyramiden. Zuweilen — und zwar immer nur an kleinen Individuen findet sich auch eine kleine Endfläche, mit welcher immer zwei auf die anliegenden makrodiagonalen Kanten schief aufgesetzte Domenflächen auftreten, zu welchen sich dann öfters noch die gerade Abstumpfung der entsprechenden makrodiagonalen Kanten gesellt.

Wir erhielten:

berechnet	gemessen
(111) $(\overline{1}11) = 580 5'$	570 50'
$(111) (1\overline{1}1) =$	610 58' *
$(111) (11\overline{1}) =$	890 57' *
$(111) (010) = 59^{\circ} 1'$	
(111) (110) = 44058!5	
$(111) \ (120) = 45^{\circ} 34'$	
$(110) (\overline{1}10) = 86^{\circ} 33'$	860 15'
$(120) (\overline{1}20) = 50^{\circ} 25'$	500 40'
$(120) (010) = 25^{\circ} 12'$	250 38'
(120) (110) = 180 4'	


Hieraus folgt:

$$a:b:c=1:0.9415:0.6857.$$

Theilbarkeit nicht deutlich, Streifungen auf den Pyramidenflächen, wie es scheint abhängig von der Lage des Krystalles in der Mutterlauge; die Streifen gehen parallel der Fläche, auf welcher der Krystall gelegen.

Die Krystalle verwittern an der Luft sehr bald und müssen, wie so viele andere leicht veränderliche Körper beim Schneiden und

Schleifen stets etwas feucht gehalten werden. Platten senkrecht zur ersten Mittellinie geschliffen und in Terpentin, Canadabalsam, Mastix oder Jeffrey'schen Kitt aufbewahrt, dunkeln sehr bald nach und werden in Kurzem undurchsichtig.

Die Ebene der optischen Axen in der Ebene der grössten und mittleren Krystallaxe, erste Mittellinie parallel b; optischer Charakter innerhalb des spitzen Winkels der Axen negativ. Also Axenschema

Scheinbarer Winkel der optischen Axen circa 50° beim Austritt in die Luft; Dispersion nicht unbeträchtlich: Axenwinkel für Roth grösser als für Violet.

Platten, senkrecht zur optischen Axenebene geschnitten, zeigen vor der dichroskopischen Loupe geringen Farbenunterschied; beide Bilder braunroth, doch das zu c gehörige mehr gelblich; das zu b gehörige mehr röthlich.

Bezüglich der Absorption:

$$\S > \varsigma$$
.

Keine Dimension entscheidend vorherrschend.

13. Unterschwefelsaures Natron NaO, $S_2O_5 + 2aq$. Taf. 3, Fig. 8.

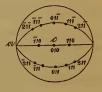
Krystalle aus der Böttger'schen Sendung, aus H. Prof. Sehrötter's und

H. Prof. Redtenbacher's Laboratorium.

Sie zeigen die von Heeren (Pogg. 7, 76) beschriebene Form: wir fanden im Mittel an 11 gemessenen Krystallen:

	Heeren
$pa = 44^{\circ}45'$	440 48'
$ra = 58^{\circ} 49'$	580 54'
$ro = 27^{\circ} 0'$	270 6'
$op = 49^{\circ} 53'$	490 51'

Es ist somit


$$a:b:c=1:0.9913:0.5999$$
,

und die Flächen unserer Krystalle erhalten die Symbole:

$$p(110)$$
, $a(010)$, $o(111)$, $r(011)$, $o/2(211)$.

Im Polarisationsmikroskope zeigt sich gleichmässige Structur. Die Ätzfiguren (durch Wasser hervorgebracht) sind sehr ausgezeichnet: in verschiedener Grösse zeigen sie alle gleiche Klarheit und bestehen aus (110) (011) (211).

Ebene der optischen Axen im Querschnitte des Prisma (110); die erste Mittellinie geht durch die stumpfe Kante, liegt also parallel der Brachydiagonale.

Positiv; also c parallel b und das Axensymbol

Axenwinkel für Roth kleiner als für Blau; starke Dispersion der Axen. Scheinbarer Axenwinkel

Schleift man einen Krystall parallel a von der einen Seite her an und untersucht man ihn dann im Nörrenberg'schen Apparate, so zeigt er sehr schön die Axen durch die Prismenflächen, jedoch so, dass scheinbar $\rho > \upsilon$.

Die Krystalle entweder gleichförmig ausgebildet oder nach der mittleren Elasticitätsaxe verlängert.

14. Schwefelsaures Kali KO, SO₃.

Taf. 2, Fig. 4.

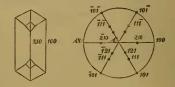
Krystalle aus dem Laboratorium des Herrn Prof. Schrötter und aus der Böttger'schen Sendung.

Unsere Krystalle zeigen die Combination

$$q^2 q$$
 an $b = 67^{\circ} 30'$
 $o o/_2 = 19^{\circ} 30'$
 $o p = 33^{\circ} 30'$

es ist somit, wenn die von Mitscherlich berechneten Axenlängen

$$a:b:c=1:0.7464:0.5727$$


zu Grunde gelegt werden,

$$o(111)$$
, $o/2(121)$, $p(101)$, $q^2(210)$, $q(110)$.

Spaltbarkeit undeutlich.

Ebene der optischen Axen imQuerdurchschnitte des Prisma q, also in der Ebene der grössten und mittleren Krystallaxen.

Erste Mittellinie im spitzen Winkel des Prisma (210), also

parallel b. Positiv; das Axenschema ist demnach

açb.

Scheinbarer Axenwinkel nach Sénarmont $100^{\circ}52'$, reducirt auf den wirklichen $66^{\circ}54'$.

Die Axenwinkel für verschiedene Farben kaum merklich verschieden. Sénarmont gibt daher an, er sei für Roth und Blau gleich gross: durch die Untersuchung von mehr als 20 Platten der verschiedensten Dicke haben wir uns überzeugt, dass $\nu > \rho$.

Krystalle verlängert in der Richtung der mittleren Elasticitätsaxe.

Nach Sénarmont (Ann. ph. ch. 1851, 33,413) wäre auch hier (wie am chromsauren Kali) die erste Mittellinie parallel der Makrodiagonale des Prisma von 73° 30′ (q Ramm.); nur wäre dieselbe hier, in dem positiven Krystalle die kleinste, im chromsauren Kali aber die grösste Elasticitätsaxe.

Wir haben uns durch wiederholte Untersuchung überzeugt, dass diese Angabe auf einem Versehen beruht, das wohl darin seinen Grund hat, dass Sénarmont das Prisma (210), welches am schwefelsauren Kali vorherrschend auftritt, mit dem Prisma (110) verwechselte: Die Makrodiagonale des ersten fällt in die Brachydiagonale des letzteren und der makrodiagonale Kantenwinkel des einen weicht nur um eirea 4° von dem brachydiagonalen des andern ab.

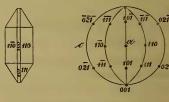
In Beer's Einleitung in die höhere Optik (p. 380) ist ausserdem die Orientirung der Axenebene abweichend angegeben; es ist als Axenebene der Querschnitt des Prisma $p=59^{\circ}$ 36', als erste Mittellinie die zweite Elasticitätsaxe gesetzt.

Es sind somit die Elasticitätsaxen ihrer Grösse nach gleichmässig in den beiden isomorphen Verbindungen orientirt; nur die Differenzen der Quadrate dieser Grössen stehen in beiden Fällen in verschiedenen Verhältnissen. Ein ähnliches Verhalten haben wir oben am Kaliumquecksilberchlorid und Ammoniumquecksilberchlorid nachgewiesen.

15. Chromsaures Kali KO, CrO₃.

Taf. 3, Fig. 4.

Krystalle von H. Sect. R. Haidinger aus der Böttger'schen Sendung.


Unsere Krystalle zeigen ein längliches rhombisches Prisma mit gerader Abstufung der spitzen Kanten; an den Enden die Flächen einer rhombischen Pyramide mit der Abstufung der makrodiagonalen Kanten. Wir fanden folgende Winkel, welche mit den nach Mitscherlich berechneten zusammengestellt werden:

$$r/_2: r/_2 = 114^{\circ} 35'$$
 Mitscherl. $114^{\circ} 42'$ $r/_2: o = 30^{\circ} 30'$ $30^{\circ} 35'$ $r/_2: q = 47^{\circ} 0'$ $47^{\circ} 11'$

nach welchen der Krystall orientirt wurde; es ist somit, wenn wir die Mitscherlich'schen Axengrössen zu Grunde legen

$$a:b:c=1:0.7297:0.5695$$
 o (111), q (110), $r/_2$ (021), p (101), a (001), b (100). Nicht deutlich spaltbar.

Die Ebene der optischen Axenfällt wie auch Sénarmont (Ann. ph. ch. 1851, 33, 413) bemerkt hat, in den Querschnitt des verlängerten Prisma (110), geht somit durch die mittlere und längste Krystallaxe.

Erste Mittellinie ist a. Negativ, also $\mathfrak a$ parallel a, und das Axensymbol

Scheinbarer Axenwinkel = 92° (92°10′ nach Sénarmont, was nach den von ihm gegebenen Brechungsexponenten für den wirklichen Winkel 49°32′ gibt).

Axenwinkel für Roth grösser als für Blau.

Unsere Krystalle sind verlängert in der Richtung der mittleren Elasticitätsaxe.

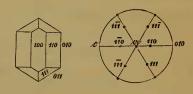
16. Schwefelsaure Magnesia (Bittersalz) MgO, SO₃ + 7HO.

Taf. 3, Fig. 2.

Krystalle aus Prof. Schrötter's Laboratorium.

Durch Brewster, Beer und Sénarmont optisch bestimmt. Unsere Krystalle sind holoëdrisch und zeigen die Flächen der verlängerten Säule mit abgestumpftem spitzen Winkel und an den Enden die gewöhnliche rhombische Pyramide o, mit Abstumpfung der stumpferen Axenkanten.

Die Ätzfiguren, hervorgebracht durch Auflösung durch einen Wassertropfen, zeigen nichts desto weniger die tetraëdrische Ausbildung theils durch gänzliches Ausbleiben der entsprechenden Paare, theils durch sehr beträchtliches Vorwiegen derselben.


Nach Brooke's Messungen ergibt sich

$$a:b:c=1:0.9901:0.5709$$
,

und somit für unsere Flächen

$$o(111)$$
, $p(110)$, $b(100)$, $r(011)$.

Die Orientirung der Axen stimmt mit den Beobachtungen der oben genannten Forscher; die Ebene der Axen steht senkrecht auf der Spaltungsebene b und der kürzesten Krystallaxe. Charakter negativ. — Das Axenschema ist demnach

acb.

Scheinbarer Winkel der optischen Axen = 56°50′ (56°56′ Sénarmont, was reducirt nach dem von ihm bestimmten mittleren Brechungsexponenten 38°14′ für den wirklichen Winkel gibt).

Die Axen fallen für die verschiedenen Farben fast zusammen, doch die Untersuchung mit homogenen Gläsern lässt den Winkel für Blau unzweifelhaft für grösser erkennen als für Roth.

Verlängerung der Krystalle in der Richtung der mittleren Elasticitätsaxe

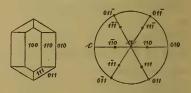
17. Schwefelsaures Zinkoxyd ZnO, SO₃ + 7HO.

Taf. 3, Fig. 3.

Krystalle aus der Böttger'schen Sendung, zur Untersuchung gegeben durch H. Sect. R. Haidinger.

Die gewöhnlichen, von Brooke, Mohs und Rammelsberg gemessenen holoëdrischen Formen; ausserdem die von Rammelsberg an der schwefelsauren Magnesia beschriebenen Flächen von $^{1}/_{20}$ und $o^{1}/_{2}$ (Flächen, welche in den Zonen ob, gq und oa, rp spiegeln): an manchen Krystallen sogar vorwiegend gegen o; die gewöhnlichen Formen zeigen sich auch als Ätzfiguren auf den geschliffenen und hierauf für einen Augenblick wieder angefeuchteten

Platten: es sind immer längliche Höhlungen, bestehend aus den Flächen p, b, r - o untergeordnet, doch niemals hemiëdrisch. Nach Brooke's Messungen ist


$$a:b:c=1:0.9804:0.5631$$
,

und es sind somit die Symbole unserer Flächen

$$p(110), a(010), b(100), r(011), o(111), \frac{1}{2}, o(121), o(121), o(101)$$

Die Ebene der optischen Axen liegt, entsprechend den Untersuchungen Sénarmont's in der Basis des rhombischen Prisma;

erste Mittellinie die Makrodiagonale (also senkrecht auf der besten Spaltungsrichtung); optischer Charakter innerhalb des spitzen Winkels der optischen Axen negativ; folglich das Axenschema

acb.

Scheinbarer Winkel der optischen Axen nach Sénarmont 64°18, was für den wirklichen Winkel 44°2' gibt.

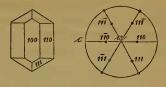
Die Dispersion der Axen ist kaum bemerkbar, doch ist, nach Vergleichung zahlreicher Platten von verschiedener Dicke $\rho < \upsilon$.

Krystalle verlängert in der Richtung der mittleren Elasticitäts-Axe.

18. Chromsaure Magnesia MgO, CrO₃ + 7HO.

Taf. 4, Fig. 1.

Krystalle aus Herrn Prof. Schrötter's Laboratorium.


Isomorph mit dem vorigen. An unseren Krystallen war immer nur die einfache tetraëdrische Endigung des rhombischen Prisma wahrzunehmen.

Aus Murmann's (Sitzb. W. Ak. 1857, Bd. XXVII) Messungen ergibt sich

$$a:b:c=1:0.9901:0.5735.$$

Folglich

Die optischen Axen, entsprechend der Beobachtung von Beer, im makrodiagonalen Hauptschnitte, c die Normale der Axenebene; Charakter negativ; also Axenschema

ась.

Scheinbarer Winkel der optischen Axen = c. 70°. Winkel für Roth merklich kleiner als für Blau (in Widerspruch mit Beer's Angabe).

Verlängerung der Krystalle nach der mittleren Elasticitäts-Axe.

19. Schwefelsaurer Kalk (Karstenit) CaO, SO3.

Taf. 2, Fig. 3; Taf. 7, Fig. 12.

Krystalle aus dem k. k. Hof-Mineralien-Cabinet.

Die ersten Messungen dieses Minerales rühren von Hauy her; nach ihm (Tr. de Min. 1822, 2 ed., 563) ist das Axenverhältniss

$$a:b:c=\sqrt{30}:\sqrt{21}:\sqrt{17}=1:0.8967:0.7528,$$

also

$$(111)$$
 $(\bar{1}11) = 580 \, 27'$

$$(111)$$
 $(1\overline{1}1) = 71^{\circ}25'$
 (111) $(11\overline{1}) = 80^{\circ}53'$

Diese Daten finden sich seitdem in den meisten Mineralogien wiedergegeben; z. B. von Zippe, in seiner Bearbeitung der Physiographie zu Mohs' Naturgeschichte des Mineralreiches (2. Ausg. 1839, 2,72) und Dufrénoy (2. Ausg. Paris 1856, 2,388). Es scheint auch seit Hauy der Karstenit nur einmal wieder gemessen worden zu sein: Miller (Phil. Mg. [III] 19, 178. Pg. Ann. 1842, 55, 526) berechnete nämlich an einem Krystalle der zwar matt, aber doch hinreichend gut ausgebildet war, um eine brauchbare Messung zu gestatten:

$$(111)$$
 $(\overline{1}11) = 66^{\circ} 48'$
 (111) $(1\overline{1}1) = 68^{\circ} 20'$
 (111) $(11\overline{1}) = 76^{\circ} 18'$

woraus

$$a:b:c=1:0.9798:0.8909.$$

Durch die Untersuchung von Karstenitkrystallen, welche in St. Andreasberg in einer Kalkspathdruse gefunden worden, gelangte Fr. L. Hausmann zur Überzeugung, dass schwefelsaurer Kalk zur Gruppe der mit Schwerspath isomorphen Mineralien zu stellen sei, obschon der Krystallisationscharakter in allen Individuen aus dem Salzkammergut in Oberösterreich nur auf ziemlich künstliche Weise diese Parallelstellung zulässt. Dana, welcher Hausmann's Ansicht beipflichtet, stellt daher auch die Krystalle jenem Isomorphismus entsprechend auf und bezieht die Flächen auf Axenwerthe, welche die Verwandtschaft mit der erwähnten isomorphen Gruppe ausdrücken. Wir kommen zum Schlusse auf diese Ansicht noch einmal zurück.

In der Sammlung des k.k. Hof-Mineraliencabinetes befindet sich eine Reihe ausgezeichneter Krystalle von Aussee mit den Flächen dreier rhombischer Pyramiden und der Pinakoide. Wir wählten fünf der besten Individuen zur Messung aus. Die Flächen der rhombischen Pyramiden sind zwar meistens gestreift, doch hindert dies nicht, dass das Fadenkreuz fast an allen deutlich durch Spiegelung wahrzunehmen ist; manchmal freilich sind Doppelbilder vorhanden. Die Streifung ist zweifach: einmal parallel der Kantenzone der rhombischen Pyramiden; dann parallel dem zweiten Blätterbruche (also nach unserer Aufstellung parallel 100). Die Krystallflächen parallel zum dritten Blätterbruche (001) sind oft auf eine merkwürdige Weise gezeichnet: es ist, als wären zahlreiche spitze Schuppen, deren Längenaxe parallel dem zweiten Blätterbruche läuft, übereinander geschoben; gegen die Combinationskante mit den Pyramiden hin, häufen sie sich so, dass die Kante stumpf und rauh wird. Wir haben in einer Zeichnung, Taf. 7, Fig. 12, diese eigenthümliche Beschaffenheitetwa 120mal vergrössert dargestellt. Sie haben nichts gemein mit den von Hauv beschriebenen jointes surnuméraires. Kenngott hat dieser Bildung (Sitz. Ber. W. Ak. 16, 162) Erwähnung gethan und hält dafür, dass sie durch Erosion durch Wasser bewirkt wird, das den wasserfreien schwefelsauren Kalk auflöst und in Gyps umsetzt. Dies wird durch die Gegenwart kleiner Gypskrystalle auch bestätigt, nur können wir in den beschriebenen und dargestellten Formen keineswegs die Nebeneinanderreihung zahlloser rhombischer Pyramiden sehen, deren Spitzen alle in einer Ebene liegen und dadurch die rauhe Endfläche bilden. Es sind vielmehr deutliche Combinationen der rauhen, ursprünglich als Fläche vorhandenen Basis mit irgend einem, nicht näher zu bestimmenden Prisma.

Bekanntlich gibt Hauy als dritten Blätterbruch, welcher wegen seiner etwas rauhen Beschaffenheit allein deutlich und unverkennbar von den beiden andern, sehr ähnlichen zu unterscheiden ist, die Fläche M (010 unserer Zeichnung) an, während Miller dafür die Fläche P (001 unserer Zeichnung) bezeichnet. In der That genügt ein einziger Blick, um die Unrichtigkeit der Hauy'schen Aufstellung wahrzunehmen und Quenstedt ist im Unrecht, wenn er Miller's Untersuchung gegenüber jenen älteren Angaben verwirft.

Wir fanden an dem ersten Krystalle, der nach (010) tafelförmig ausgebildet ist

```
\begin{array}{lll} (010) & (131) &= 26^{0} \, 42' \, * \\ (131) & (121) &= 9^{0} \, 51' \\ (121) & (111) &= 20^{0} \, 7' \\ (100) & (111) &= 56^{0} \, 15' \, * \\ (100) & (121) &= 66^{0} \, 19^{1} \, 5 \, * \\ (100) & (131) &= 72^{0} \, 30' \\ (001) & (131) &= 70^{0} \\ (001) & (121) &= 63^{0} \, 40' \\ (001) & (111) &= 51^{0} \, 50' \\ (121) & (12\overline{1}) &= 53^{0} \, 20' \end{array}
```

Der zweite Krystall, gleichfalls tafelförmig durch das Vorherrschen der matten Endfläche, gab

```
\begin{array}{l} (131) \ (13\overline{1}) = 39^{\circ} \, 30' \\ (010) \ (131) = 26^{\circ} \, 41^{\circ} \, 5 \ * \\ (131) \ (121) = 10^{\circ} \, 12' \ * \\ (121) \ (111) = 19^{\circ} \ 6' \\ (100) \ (131) = 72^{\circ} \, 28' \ * \\ (100) \ (111) = 56^{\circ} \, 15^{\circ} \, 5 \ * \\ (131) \ (\overline{131}) = 53^{\circ} \, 20' \ * \\ (131) \ (\overline{111}) = 83^{\circ} \, 10' \\ (111) \ (131) = 29^{\circ} \, 28' \end{array}
```

Der dritte Krystall zeigt uns die dritte rhombische Pyramide deutlich, und ist wie die beiden ersten tafelförmig nach (001):

```
(010) (131) = 26^{\circ} 42' * (100) (131) = 72^{\circ} 50' *
```

Der vierte Krystall hat die drei Pyramiden zum Theil vollständig: am deutlichsten (121) und (111). Stangenförmig durch Verlängerung in der Richtung der mittleren Krystalle.

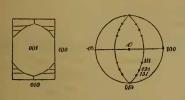
$$\begin{array}{lll} (010) & (121) & = & 36^{\circ} \, 39' \\ (100) & (121) & = & 66^{\circ} \, 20^{\circ} \, 3* \\ (001) & (121) & = & 63^{\circ} \, 44' \\ (010) & (111) & = & 56^{\circ} \, 29' \\ (100) & (111) & = & 56^{\circ} \, 20' \\ (111) & (11\overline{1}) & = & 76^{\circ} \, 50' \\ (111) & (\overline{1}1\overline{1}) & = & 112^{\circ} \, 1' \\ (111) & (\overline{1}1\overline{1}) & = & 67^{\circ} \, 11' \\ (121) & (\overline{1}1\overline{1}) & = & 93^{\circ} \, 49' \end{array}$$

Der fünfte Krystall zeigt nur die Flächen (100) (001) (131):

$$(131) (100) = 72^{\circ} 36'$$

Bei der Berechnung gingen wir von den Kanten (100), (121) und (100), (111) aus, indem wir die Indices von (121) als bekannt voraussetzten. Mit Berücksichtigung aller Repetitionen ist

$$(100)$$
 $(121) = 66^{\circ} 19^{!} 8$
 (100) $(111) = 56^{\circ} 14^{!} 5$,


woraus dann folgt:

berechnet	gemessen		
	durch Miller		
(100) (111) =	56º 36'	560 14 15	
(100)(121) =	660 45'	66º 19¹8	
$(100) (131) = 72^{\circ} 34^{!} 5$	720 56'	720 38'	
$(010) (111) = 56^{\circ} 27^{!}5$	550 50'	56° 29′	
(010) (121) = 370 1!5	360 23'	360 19'	
(010) $(131) = 26^{\circ}41^{\circ}6$	26° 10′	260 46'	
(001) (111) = 51035!5	510 51'	510 45'	
$(001) (121) = 63^{\circ} 20'$	630 43'	630 42'	
(001) (131) = 700 26!5	700 47'	700	
(111) $(\overline{1}11) = 67^{\circ}$ 4'			
$(111) (1\overline{1}1) = 67^{\circ} 31'$		670 11'	
$(111) (11\overline{1}) = 76^{\circ}48'$		760 50'	
(121) $(\overline{1}21) = 47^{\circ} 20^{!} 4$			
$(121) (1\bar{2}1) = 105^{\circ} 57'$			
$(121) (12\overline{1}) = 53^{\circ} 20'$		530 20'	
(131) $(\overline{1}31) = 34^{\circ}51'$			
$(131) (1\overline{3}1) = 126^{\circ} 36^{!} 8$			
$(131) (13\overline{1}) = 39^{\circ} 7'$		390 30'	
(111) $(121) = 19^{\circ}26'$	190 27'	190 28 5	
$(111) (131) = 29^{\circ} 45^{!} 9$	290 40'	290 28'	
$(121) (131) = 10^{\circ} 19^{!}9$		100 12'	
(111) $(\overline{1}1\overline{1}) = 112^{\circ}55^{\circ}0$			
(121) $(\overline{1}2\overline{1}) = 74^{\circ} 3'$			
(131) $(\overline{1}3\overline{1}) = 53^{\circ}23^{\circ}2$		530 20'	

hieraus berechnet sich nun

$$a:b:c=1:0.9943:0.8895.$$

Der erste Blätterbruch geht parallel (010), der zweite parallel (100), der dritte unvollkommene parallel (001). — Dana, Kenngott und A. erklären das, was wir für den ersten Blätterbruch halten, für den zweiten, und umgekehrt: es ist aber eine Unterscheidung so schwer zu treffen, dass wir lieber angaben, was wir übereinstimmend in unserem Beobachtungsjournal als ersten Blätterbruch notirt hatten. Auf die optische Orientirung hat dies natürlich keinen Einfluss, indem die verschiedene Ansicht über die äussere Beschaffenheit der Fläche (010) an den Indicibus und den Richtungen der optischen Constanten nichts ändert.

Viel sicherer als die Theilbarkeit orientirt das optische Verhalten. Wir fanden, entsprechend den Angaben Miller's, die erste Mittellinie normal zu der Fläche (001); die Ebene der Axen ist parallel dem ersten Blätterbruche. Quenstedt gibt

zwar in seinem Handbuche diese Bestimmungen Miller's wieder, da er aber die Orientirung ändert, so ist auch die Angabe, dass die optischen Axen in der Ebene T (Hauy) liegen, zu berichtigen. Eben so ist auch die Orientirung, welche Soret gegeben, unrichtig. Da der Charakter der Doppelbrechung positiv ist, so erhalten wir als Axenschema

Winkel der optischen Axen

scheinbar	wirklich
$AB_0 = 70^{\circ} 18'$	420 40'
$AB_b = 72^{\circ} 42'$	430 50

(Die Reduction mittelst der Miller'schen Brechungsexponenten ausgeführt.) Nach Miller $AB=43^{\circ}32'$, nach Biot $44^{\circ}41'$; aus Miller's Indicibus berechnet $40^{\circ}26'30''$ (vergl. Beer's Einleitung in d. höh. Optik).

Der Karstenit ist zwar meist farblos oder doch nur sehr schwach gefärbt; aber geringe Färbung lässt schon, da die Krystalle meist in

beträchtlicher Dicke zu haben sind, vor der dichroskopischen Loupe deutlichen Pleochroismus erkennen. An einer Reihe von Stücken aus Hallein und Aussee fanden wir

Die stärkere Färbung von ç ist so deutlich, dass man schon mit Hilfe der dichroskopischen Loupe Krystalle verschiedener Fundorte einander parallel stellen kann.

Multiplicirt man unser Axensystem der Reihe nach mit den Factoren

so verwandelt sich dies in

$$a:b:c=1:0.7489:0.5958$$

das ist das System der isomorphen Gruppe des Schwerspathes, dann aber werden die Symbole unserer Flächen:

und das Axenschema

Es ist nun doch, wie wir glauben, fraglich, ob es zu rechtfertigen ist, den Isomorphismus in der Weise, wie es Hausmann und Dana gethan, als eine ausgemachte Thatsache hinzustellen. Ehe nicht genauere Messungen der Harzerkrystalle vorliegen, scheint es bedenklich, die allerdings beachtenswerthe Thatsache, dass ziemlich einfache Factoren hinreichen, um das Karstenitsystem in das Schwerspathsystem umzusetzen, als einen directen Beweis der Identität der Formen anzunehmen und statt der thatsächlichen Axenverhältnisse die hypothetischen allein anzuführen. Die Übereinstimmung des specifischen Volums ist übrigens für den Isomorphismus.

20. Schwefelsaurer Baryt (Schwerspath) BaO, SO₃. Taf. 2, Fig. 1, 2, 5, 7. 8.

Krystalle aus dem k. k. Hof-Mineralien-Cabinete.

Dieses von Brewster, Malus, Biot, Heusser, Sénarmont und Beer vielfach studirte Mineral konnte hier nicht Gegenstand neuer Untersuchungen werden. Wir fanden nur bestätigt, dass die Axenebene im brachydiagonalen Hauptschnitte des Theilungsprisma liegt, dass die Brachydiagonale erste Mittellinie und der Charakter der Doppelbrechung innerhalb des spitzen Winkels der optischen Axen positiv ist. Die von uns untersuchten Krystalle sind aus Przibram und aus Schemnitz. Nimmt man die bekannten Axenverhältnisse

$$a:b:c=1:07622:0.6208$$

(wo b und c die Diagonalen des Theilungsprisma), so ist das Axensymbol

Winkel der optischen Axen

$$AB\rho = 62^{\circ}25' (62^{\circ}34' \text{ He usser}) 36^{\circ}56' \\ ABc = 65^{\circ}50' (65^{\circ}54') 38^{\circ}28'$$

(die Reduction mittelst der Heusser'schen Brechungsexponenten ausgeführt). Es ist daher $\rho < \nu$

Bezüglich der Aufstellung der Gestalten 1) bemerken wir, dass sie sowohl von der Hauy'schen (X=b, Y=c, Z=a) als auch die Mohs'schen (X=c, Z=a)

Y=a, Z=b) abweicht; gleichwohl scheint die von uns erhaltene der Verwandtschaft mit den übrigen mehr zu entsprechen. Die bisher betrachteten Sulphate zeigen sämmtlich ein Vorherrschen der Richtung der mittleren Elasticitätsaxe. Fig. 2 (Krystall aus der Auvergne, von Przibram etc.) zeigt diesen Charakter; Fig. 1 gibt den Typus vom Krystalle von Felsőbánya; Fig. 5 den der bekannten Harzer; Fig. 7 den der Veleyenser; Fig. 8 den der meisten oberungarischen und Siebenbürger Krystalle.

$$a > b > c \begin{cases} X = c & c & a & b \\ Y = b & a & c & c \\ Z = a & b & b & a \end{cases}$$

Zur Vergleichung dieser Aufstellung mit den von den bekanntesten Mineralogen gewählten, dient die folgende Übersicht:

¹ ist unsere Aufstellung; 2 die von Mohs, Haidinger; 3 die von Naumann; 4 die von Hauy, Dufrénoy, Miller, Dana, Quenstedt.

Der Schwerspath kommt nur selten ganz klar und farblos vor. Das k. k. Hof-Mineralien-Cabinet besitzt Exemplare von Dufton (nach Typ. Fig. 5), Przibram (Typ. Fig. 2) und Cumberland (Typ. Fig. 7), welche wasserhell sind und vor der dichroskopischen Loupe nicht die geringsten Absorptionsunterschiede zeigen. Brewster und Haidinger haben eine Anzahl von mehr oder weniger gefärbten und pleochromatischen Varietäten beschrieben (Miller's Krystallographie, deutsche Übersetzung p. 303); wir untersuchten die einzelnen Krystalle des k. k. Hof-Mineralien-Cabinets und fanden:

	1	l r.		1
Typus Fig. 1.	g	þ	ç	
• 1	citronen-	atush wall	grauviolet	$ \varsigma>_{\alpha}^{\mathfrak{b}}$
Auvergne (braun) Typus Fig. 2.	gelb	strohgelb	grauvioiet	3 - a
**	80.2	ma ah a mall	violet	10 - 16
Auvergne (rauch-braun)		wachsgelb		ç> p
"	licht stroh- gelb	weingelb	violet	ç>\$>å
Przibram (von braun- gelb bis farblos)	gelblich bis wasserhell	gelb bis gelblich- grün	violet, zum Theil na- hezu farb- los	ç> \$ > a
Marienberg, Sachsen (hell meergrün. Mit gel- bem Flussspath)		klar meer- grün	licht ame- thystblau	ç>ţ
Przibram (schwach grünlich, stellenweise schwach lila)		hell meer- grün	hell ame- thystblau	ç> ţ
Typus Fig. 7.				
Veleja, Parma (braun bis nahezu wasserhell)	weingelb farblos	schwefel- gelb bis meergrün	grauviolet violet	ç>\$> a
Cumberland (wasser- hell). In einigen sehr dicken Stücken zeigt sich eine Spur von Pleochrois- mus.	wasserhell	wasserhell mit Stich ins Meer- grüne	wasserhell mit Stich ins Violete	ç>\$> a
Northfield, Surrey (ho- niggelb)	gelblich- braun	gelblich- braun	röthlich- braun	ç> ş> g
Typus Fig. 8.				
Felsöbánya (aschgrau)		Stich ins Gelbliche	Stich ins Braunliche	ç>
Offenbánya (schwach apfelgrün)			sehwach amethyst- blau	ç>ţ

Schemnitz (fast farblos mit Stich ins Grünliche) Rheinbaiern (wegender merkw. Verschiedenheit der einzelnen Farbentöne	oli oli	schwach meergrün	schwach violet	$ \hat{c}>\hat{p}$
erscheint auch die Kör- perfarbeingewöhnlichem Lichte verschieden). Es	indigo	kräftig meergrün	schwach violet	a>b>c
liegen nur Bruchstücke vor, mit nicht ganz deut- lichen Blätterdurchgän- gen; doch scheint die Vertheilung der Farben-	400 h			
töne wie in dem beifol- genden Schema Statt zu haben.	75			

Mit Ausnahme des letzten Stückes zeigen demnach alle Schwerspathe grösste Absorption der Strahlen von geringster Fortpflanzungsgeschwindigkeit. Eigentlich aber muss man sagen, dass im Schwerspath, insofern überhaupt Absorption stattfindet, von

jenen Vibrationen, welche den Krystall am raschesten durchschreiten (welche nämlich parallel der grössten Elasticitätsaxe geschehen), die von längster Schwingungsdauer (also die dem Roth naheliegenden im Spectrum); und von

jenen Vibrationen, welche den Krystall mit mittlerer Geschwindigkeit durchschreiten (Vibration parallel c), die von längster und kürzester Schwingungsdauer (also die dem rothen und blauen Ende im Spectrum naheliegenden) am meisten absorbirt werden.

21. Schwefelsaurer Strontian (Cölestin) SrO, SO3.

Taf. 1, Fig. 12; Taf. 2, Fig. 7, 8, 9.

Krystalle aus dem k. k. Hof-Mineralien-Cabinete und der k. geol. Reichsanstalt.

Wurde bezüglich der Orientirung der Elasticitätsaxen durch Knoblauch, Tyndall und Sénarmont studirt. Sie fanden ihn optisch ähnlich dem Schwerspath.

Wir untersuchten Krystalle aus Girgenti und aus Herrengrund. Da die letzteren bisher nicht näher beschrieben worden, so bestimmten wir zuvörderst die krystallographischen Verhältnisse derselben.

Die Herrengrunder Cölestine sind, ähnlich denen aus Leogang, Montecchio maggiore und Rossie bläulich-grau. Sie kommen vor aufgewachsen auf krystallisirtem Kalkspath. Ihre Formen variiren; meist sind es barytähnliche Individuen von dem Typus Fig. 8; zuweilen, obschon selten und dann immer in grösseren Individuen treten auch Combinationen von dem Charakter der bekannten sicilischen und schlesischen Formen auf. Fig. 12, Taf. 1 und 9, Taf. 2 stellen zwei ausgezeichnete Individuen dar.

Bezeichnen wir die Axen durch

$$a:b:c=1:0.7794:0.6086$$
,

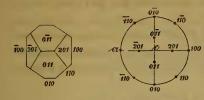
so wird das Theilungsprisma (011), die darauf senkrechte Theilungsfläche (100). Die Miller'schen Flächenindices werden dann durch die blosse Transposition

in unsere verwandelt.

Wir fanden an einem Krystalle der ersten Art:

gemesse	n	berechnet (Mill.)
(100) (401) =	210 50'	220 22'
(100)(201) =	380 46'	390 25'
(110)(111) =	630 52'	640 22'
(011)(111) =		25° 38′

Die Flächen dieser Krystalle sind uneben und geben fast immer mehrfache Bilder.


An einem Krystalle der zweiten Art fand sich:

(100) $(110) = 51$	0 49'	520 4'
$(101)(\overline{1}10) = 75$	30 53 ! 5	750 52'
$(011) (0\overline{1}1) = 75$	50 25'	750 58'
(100) $(401) = 22$	20 22'	220 22'
(100) $(201) = 39$	0 16'	390 25'
(210) $(\bar{2}01) = 101$	0 56 ! 5	1010 11'
(111) (011) = 25	5º 56'	250 38'

Die Flächen spiegeln durchschnittlich vortrefflich; Doppelbilder nur auf (100) und (011).

An dem Krystalle Fig. 12, Taf. 1 sind die Flächen (100), (110), ein unbestimmbares (hko), (011), (111), (001), (201), (401) und ausserdem in den Zonen

$$[(111, 010) (110, 011)] = (121)$$

 $[(100, 111) (401, 110)] = (511)$

Wir fanden die Ebene der optischen Axen entsprechend den obenerwähnten Beobachtungen in der Ebene ac; erste Mittellinie c, Charakter positiv: also Axenschema

abç.

Scheinbarer Winkel der optischen Axen circa 100°.

Dispersion der Axen nicht beträchtlich: Axenwinkel für rothes Licht kleiner als für blaues.

Die Krystalle sind entweder in der Richtung der kürzesten Elasticitätsaxe verlängert, oder in der Richtung der längsten verkürzt.

22. Schwefelsaures Bleioxyd (Bleivitriol) PbO, SO3.

Taf. 2, Fig. 6; Taf. 3, Fig. 1.

Krystalle aus dem k. k. Hof-Mineralien-Cabinet.

Das Axenverhältniss ist nach von Kokscharow (Materialien zur Min. Russlands, Bd. I, S. 34)

$$a:b:c=1:0.77556:0.60894.$$

Sénarmont (Ann. ch. ph. 1851, 33, 410) gibt Andeutungen über die Lagen der Ebene der optischen Axen. Er findet sie übereinstimmend mit der im Schwerspath und den Charakter der Doppelbrechung bezüglich der ersten Mittellinie positiv.

Wir fanden diese Angaben bestätigt. Es ist somit das Axensymbol

авс.

Scheinbarer Winkel der optischen Axen = 96° 35′ (in

Öl). Die optischen Axen können somit wegen innerer Totalreflexion überhaupt nicht mehr unmittelbar in der Luft wahrgenommen werden.

Der Axenwinkel ist grösser für Blau als für Roth; die Krystalle des schwefelsauren Bleies sind in der Regel verlängert in der Richtung der mittleren Elasticitätsaxe.

Die Verschiedenheit in den Axenwinkeln der drei zuletzt angeführten Mineralien, verbunden mit der Leichtigkeit, mit welcher Schliffe aus denselben herzustellen sind, macht das optische Verhalten zu einem bequemen Erkennungsmerkmal der kleinsten Spaltungsstücke, wenn alle übrigen Kriterien unsicher oder unpraktisch werden.

23. Borsaures Ammoniak $AmO_5BO_3 + 8HO$.

Taf. 3, Fig. 5, 6, 7.

Krystalle aus Prof. Schrötter's Laboratorium.

Die von Rammelsberg und Schabus beschriebenen Zwillinge sind auch an unseren Krystallen durchwegs wahrzunehmen. Sehr merkwürdig ist diese Bildung besonders an einem grossen durch mehrjährige sehr langsame Verdunstung in einer geschlossenen grösseren Flasche entstandenen Krystalle: ein einziges prädominirendes Individuum trägt die beiden andern zwillingsförmig eingebettet. (Fig. 6.)

Wir fanden ausser den von den genannten Forschern beobachteten Flächen an dem erwähnten grossen Krystalle noch kleine dreieckige Facetten auf a gegen b hin aufgesetzt: offenbar gehören diese, nach Rammelsberg's Bezeichnungsweise, zu einem Prisma r.


Für das von Rammelsberg zu Grunde gelegte Axenverhältniss ist

$$a:b:c=1:0.9827:0.8101$$
,

folglich

$$o(111)$$
, $c(001)$, $a(010)$, $q(101)$, $r^2(120)$.

Geringe Spaltbarkeit nach (001).

Ebene der optischen Axen parallel (001). Erste Mittellinie parallel der Axe b. Charakter positiv; folglich das Axenschema

açb.

Scheinbarer Axenwinkel:

für Roth 46°30', für Blau 48°24' (in der Luft).

24. Kohlensaurer Strontian. Strontianit.
Taf. 4, Fig. 8.

25. Kohlensaurer Kalk. Aragonit.
Taf. 4, Fig. 11.

26. Kohlensaurer Baryt. Witherit. Taf. 5, Fig. 1; Taf. 7, Fig. 1, 2, 3, 7.

27. Kohlensaures Bleioxyd. Cerussit. Taf. 5, Fig. 2.

RO, CO₂.

Krystalle aus dem k. k. Hof-Mineralien-Cabinete.

Die gesammte isomorphe Gruppe ist ausgezeichnet durch die vielfache, bis ins kleinste mannigfach wiederholte Zwillingsbildung, welcher als Zwillingsfläche die eine oder beide Flächen des Prisma von 107° zu Grunde liegt.

Am Aragonit wurde die wunderbare Architektonik durch Leydolt aufs Gründlichste studirt und aufgeklärt; ähnliche und zum Theil noch viel verwickeltere Verhältnisse zeigen die übrigen Glieder dieser Gruppe, welche den Scharfsinn verschiedener Mineralogen und Physiker beschäftiget, zuletzt noch Sénarmont, der die interessanten Structurverhältnisse des Witherites beschrieben.

Den Typus der Krystallisation bildet ein rhombisches Prisma, dessen spitze Kanten durch die Fläche des Brachypinakoides fortgenommen sind, und dessen Ende entweder durch ein Brachydoma (Aragonit, Cerussit) oder durch die rhombischen Pyramiden und das nächst schärfere Makrodoma (Cerussit, Witherit) oder durch Pyramiden, nächst schärferes Makrodoma und Gradendfläche (Strontianit, Aragonit) gebildet wird.

Für alle diese Körper ist die aufrechte Prismenaxe erste Mittellinie und zwar da der Charakter der Doppelbrechung innerhalb des spitzen Winkels der optischen Axen ein negativer ist, auch die grössere Elasticitätsaxe.

Im Aragonit liegt die Ebene der optischen Axen in der Makrodiagonale des rhombischen Querschnittes. Legt man das Axenverhältniss

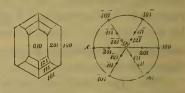
a:b:c=1:0.7207:0.6291

zu Grunde, so wird das Elasticitätsaxenschema

Scheinbarer Axenwinkel für Roth = $30^{\circ}40'$, für Blau = $31^{\circ}45'$, daher $\rho < \upsilon$.

Die Färbung der Krystalle, gelblich, röthlich, grünlich, rührt von geringen Verunreinigungen her und zeigt von der dichroskopischen Loupe kaum angebbare Unterschiede. Doch liess ein etwas grösserer Hocschenzer Krystall

> $\varsigma = \S$ oraniengelb, $\alpha = \text{schwefelgelb}$


erkennen und dabei scheint

$$\frac{c}{b} > a$$

zu sein. Doch sind Intensitätsabschätzungen bei den geringen Differenzen kaum mit Sicherheit zu unternehmen.

Strontianit, der seinen Structur-Verhältnissen nach wohl

der nächste Verwandte des Aragonits ist, indem sowohl die nadelförmigen Krystalle der Drusen (Aragonit von Schemnitz, aus dem Dep. Puy de Dôme, etc.; Strontianit aus Stronthian), als auch die grossen sechsseiti-

gen Prismen mit der Gradendfläche (Aragonit aus Molina, Herrengrund; Strontianit aus Leogang) fast identische Formen zeigen und auch der Zwillingsbau ganz den von Leydolt am Aragonit beschriebenen Verhältnissen entspricht; zeigt auch bezüglich der Orientirung seiner Axenebene die volle Übereinstimmung mit dem kohlensauren Kalk. Die verwickelte Zwillingsstructur macht das Erkennen oft schwer und wir haben in unserem Beobachtungsjournal neben einer Reihe von Angaben, welche die Axenebene in den makrodiagonalen Schnitt stellen, auch einige, die sie mit der Brachydiagonale coincidiren lassen: ein etwas schiefer Schliff und reiches Zwillingsgewebe geben leicht Anlass zu solchem Irrthume. Setzt man als Axenverhältniss

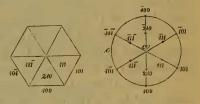
$$a:b:c=1:0.7212:0.6089$$
,

so wird das Axenschema

cab;

der scheinbare Winkel der optischen Axen in der Luft = 10° 30'; dabei der Axenwinkel für Roth merklich kleiner als für Blau.

Auch die Färbung des Strontianites zeigt Übereinstimmung mit der des Aragonites. An einem grossen Krystalle von Leogang beobachteten wir


β = ç bräunlichgelb,g gelblichbraun,

beide Töne jedoch bis zur Unkenntlichkeit stellenweise verwässert. Es ist

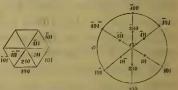
viel deutlicher wahrnehmbar als das entsprechende Verhältniss am Aragonit.

Witherit, in Krystallen von Hexham, farblos, quarzähnlich

und desshalb früher auch als hexagonal beschrieben. Wir erwähnten oben der Untersuchung Sénarmont's über die Architektonik dieser Krystalle. Wir fanden übereinstimmende Verhältnisse: Taf. 7, Fig. 1, 2, 3, 7

stellen Schnitte aus diesem Körper dar, wie sie im polarisirten Lichte erscheinen. Die Ziffern 1, 2, 3 zeigen die Zusammengehörigkeit der Individuen an. Die ganzen Krystalle sind, bei allem äusseren Anschein der Individualität, dennoch höchst zusammengesetzte Körper, und es hält schwer eine irgend ausgedehntere Partie ins Gesichtsfeld zu bringen, welche im Polarisationsapparat nicht wenigstens Zwillingserscheinungen gibt. Häufig aber sind selbst die drei über einander fallenden, folglich zu einem sechsstrahligen Sterne geordneten Polarisationsbilder wahrzunehmen. Das Übereinanderfallen dieser Bilder im Polarisationsapparate zeigt, dass, so klein auch das Gesichtsfeld sein mag, dennoch in demselben in buntem Gewebe die Elemente der einzelnen Individuen durcheinander geflochten sind. Die Pfeile in den Zeichnungen deuten die Lage der Ebene der optischen Axen an. Diese fällt demnach in die Brachydiagonale des rhombischen Querschnittes, und das Axenschema (mit Zugrundelegung des Axenverhältnisses a:b:c=1:0.741:0.595) wird

bac.


Scheinbarer Axenwinkel = c. 20%,

Dispersion der Axen nicht beträchtlich, doch deutlich Roth grösser als Blau.

Begrenzten sich die Individuen genau in den Eckpunkten des Sechseckes, so könnte man wohl behaupten, dass die Krystalle überhaupt nur aus den in Drillingsposition gegen einander gekehrten Domenflächen bestehen. Da aber, wie unsere Zeichnungen zeigen, die Individuen beliebig über die Sechseckpunkte hinübergreifen, so kann an dem Vorhandensein eigentlicher Pyramidenflächen nicht gezweifelt werden und die zerbrochenen, stellenweise fein zerklüfteten, oft wie mit den Flächen etwas stumpferer Pyramiden combinirten, in den Basiskanten sowohl als Axenkanten maunigfach unterbrochenen Krystallflächen sind eben nur das Ergebniss des Durcheinanderwachsens der Domen- und Pyramidenflächen des Drillings, die nach ihrer Grundform durch die Drillingscombination nicht gegenseitig paarweise in eine Ebene treten und desshalb bei der Ausbildung der Krystalle durch gegenseitige Störung nirgends die eigentlichen Verhältnisse des Individuums rein zum Vorschein kommen lassen.

Cerussit zeigt häufig dieselben scheinbar sechsseitigen Pyramiden, welche den Witherit charakterisiren; so z.B. die ausgezeich-

neten Krystalle aus Przibram und Bleiberg. Auch die innere Structur zeigt sich entsprechend und damit auch das optische Verhalten. Die Ebene der optischen Axen fällt nämlich, entsprechend

der Beobachtung Sénarmont's in die Brachydiagonale und es ist, mit Zugrundelegung des Krystallaxenverhältnisses

1:0.7232:0.6102

das Elasticitätsaxenschema

bac.

Scheinbarer Winkel der optischen Axen

in Öl in der Luft

für Blau . . 11°30′ . . 17°0′

" Roth . . 13°15′ . . 19°31′

Die Dispersion beträchtlich: Axenwinkel für Roth grösser als für Blau.

.Es zeigt sich demnach, dass innerhalb derselben isomorphen Gruppe bezüglich der Orientirung der Elasticitätsaxen Aragonit und Strontianit das eine, und Witherit und Cerussit das andere verwandte Paar bilden, während sie bezüglich der Grösse des Axenwinkels vom kleinsten zum grössten fortschreitend, folgendermassen geordnet sind: Strontianit, Cerussit, Witherit, Aragonit.

Auffallend ist es, dass in der Gruppe der entsprechenden schwefelsauren Verhindungen der Anhydrit in allen seinen Eigenschaften den übrigen Gliedern um so viel ferner steht.

28. Salpetersaures Kali (Salpeter) KO, NO₅.

Taf. 4, Fig. 2.

Krystalle von H. Sect. R. Haidinger aus der Böttger'schen Sendung.

Der Salpeter war einer der ersten Krystalle, an denen die Lage der optischen Axe gefunden wurde; schon 1814 Phil. Tr. 203 beobachtete sie Brewster. Seitdem haben Miller (Pg. 50, 376), Sénarmont (Ann. ph. ch. 1851, 33,407) und Beer (Pg. 81), denselben zum Gegenstand ihrer Untersuchung gemacht.

Wir haben keine weitere neue Beobachtung hinzuzufügen; setzt man mit Rammelsberg das Axenverhältniss

$$a:b:c=1:0.7028:0.5843$$

so wird das Axenschema

cab.

Der scheinbare Axenwinkel ist = 6° 15′ für Roth, 8° 45′ für Blau.

Die Dispersion der

Axen ist daher nicht unbeträchtlich.

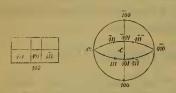
Die Krystalle nach der Richtung der grössten Elasticität verlängert, nach der Richtung der kleinsten verkürzt.

Salpeter reiht sich daher auch optisch an den isomorphen Aragonit.

29. Salpetersaures Uranoxyd U₂O₃, NO₅ + 6HO.

Taf. 4, Fig. 6.

Krystalle von H. Sect. R. Haiding er aus der Böttger'schen Sendung.


Wir fanden an dem schlecht spiegelnden und trüben Krystalle

$$0 a = 58^{\circ} 40'$$

 $0 b = 63^{\circ} 30'$

Nach Provostaye: $oa = 59^{\circ} 15'$, $ob = 63^{\circ} 30'$; aus seinen Messungen ergibt sich

$$a:b:c=1:0.8737:0.6088.$$

Die optischen Axen liegen in der Ebene der mittleren und kleinsten Krystallaxe, also parallel der vorherrschenden Fläche der Krystallplättehen; die erste Mittellinie fällt mit der kürzesten Krystallaxe

zusammen; der Charakter im spitzen Winkel ist positiv. Das Axenschema wird somit

baç.

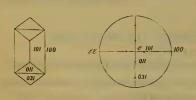
Scheinbarer Winkel der optischen Axen = 45° 15' in Öl, 67° 6' in der Luft. Axen-

winkel für Roth kleiner als für Blau.

Die Krystalle sind plattenförmig durch eine Verkürzung in der Richtung der mittleren Elasticitätsaxe.

Die Farbe schwefelgelb. Vor der dichroskopischen Loupe ohne wahrnehmbaren Pleochroismus.

30. Kieselzinkerz (Galmei) 6ZnO, 2SiO₃+3HO.


Taf. 3, Fig. 9.

Krystalle von Altenberg, k. k. Hof-Mineralien-Cabinet.

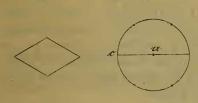
$$a:b:c=1:0.7827:0.483.$$

Unsere Krystalle zeigen die bekannte hemimorphe Combination der Säule (110) mit den Flächen von (031), (011), (001), (101), (301) einerseits, und (211) andererseits; dazu kommt das Pinakoid (100).

Die Theilbarkeit vollkommen nach (110), was die Herstellung brauchbarer Platten sehr erschwert. Die unvollkommene Theilbarkeit

nach (001) ist auch eher hinderlich, da sie das Ausbröckeln der nach (001) geschnittenen Flächen beim Poliren begünstigt.

Die Ebene der optischen Axen steht senkrecht auf dem


herrschenden Pinakoid (100); die erste Mittellinie ist parallel der Längenrichtung des Prisma (110), also senkrecht auf dem Pinakoid (001). Charakter positiv. Es ist somit das Axenschema

abç.

Scheinbarer Axenwinkel wegen der Kleinheit der Platten nicht messbar, doch aus der Erscheinung im Polarisationsapparate zu schliessen, grösser als am Schwerspath und kleiner als am Cölestin. Also c. 70°. Dispersion und Doppelbrechung nicht unbeträchtlich. Axenwinkel für Roth grösser als für Blau.

31. Muskowit.

Krystalle aus dem k. k. Hof-Mineralien-Cabinete.

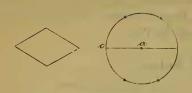
Die Ebene der optischen Axen steht bekanntlich senkrecht auf der Spaltungsrichtung und entfällt in die Makrodiagonale des rhombischen Querschnittes. Die zahlreichen Beispiele, wo die Brachydiagonale Trace der

optischen Axenebene ist, welche durch Sénarmont und einen von uns aufgeführt worden sind, scheinen sich, wie Sitzungsberichte 11,46 nachgewiesen wurde, sämmtlich auf Blättchen zu beziehen, deren ursprüngliche Umrisse durch die häufig zu beobachtende secundäre faserige Theilbarkeit (welche nach Leydolt's Beobachtungen mit Zwillingsbildungen im Zusammenhange zu stehen scheint) abhanden gekommen. Über die aufrechte Krystallaxe ist nichts Bestimmtes auszusagen; wir haben zwar mehrere Krystalle mit deutlich spiegelnden und ebenen Abkantungen der Basiskanten des Prisma gefunden, die Messung gab aber Werthe, die bis auf 10° unter einander differiren. Es lässt sich somit nur aussagen, dass bei dem negativen Charakter

c mit der Makrodiagonale,

b " " Brachydiagonale,

a " " Axe des Prisma coincidirt.


Die Dispersion ist deutlich: Axenwinkel für Roth grösser als für Blau.

Merkwürdig sind die Absorptionsverhältnisse. Während nämlich die beiden Töne ß und ç dunkelbraunroth erscheinen, ist a nahezu wasserhell; also

$$(\mathfrak{h} > \mathfrak{g}) > \mathfrak{g}$$

32. Margarit.

Krystalle aus dem k. k. Hof-Mineralien-Cabinete.

Die Krystalle mit unbestimmten Umrissen: deutlich sind nur die secundären Theilungslinien.

Ebene der optischen Axe senkrecht auf der Spaltungsrichtung: die Normale der

letzteren erste Spaltungslinie. Charakter negativ. Trace der Axenebene in der Brachydiagonale des secundären Theilungsrhombus. Folglich, wenn die Theilungslinien denselben Sinn haben wie am Muscowit, optische Übereinstimmung mit diesem bezüglich der Orientirung der Elasticitätsaxen. Der Axenwinkel etwas grösser als an grossaxigen farblosen Brasilianer Topasen.

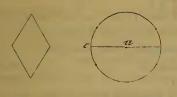
33. Lepidolith.

Krystalle aus dem k. k. Hof- Mineralien Cabinete.

Glimmer aus Zinnwald. Die hekannten sechsseitigen Blätter, mit parallelen Farbenstreifen. Die optische Axe in der Ebene der Brachydiagonale, die Farben vertheilt wie am Muskowit:

b schwefelgelb bis tiefbraun,

ç schwefelgelb bis hellbraun,


a farblos bis bräunlich.

$$(\beta > \zeta) > \alpha$$

Fast immer zeigen sich zwei um 60° gekreuzte Axenebenen. Die Krystalle scheinen in der That aus Lamellen zu bestehen, die theilweise um 60° gegen einander gedreht sind; bis Ausspalten in dünne Blätter erhält man immer die Individuen getrennt, nur bildet das eine den vorwiegenden Theil, während das andere meist aus dünnen, vereinzelt dazwischen gestreuten Lamellen besteht. Axenwinkel für Roth etwas grösser als für Blau. Charakter negativ.

34. Chlorit.

Krystalle aus dem k. k. Hof-Mineralien-Cabinete.

Die Ebene der optischen Axen senkrecht auf der ausgezeichneten Spaltungsrichtung; ihre Trace in der Brachydiagonale. Optischer Charakter des spitzen Winkels der Axen negativ: demnach

c mit der Brachydiagonale, b mit der Makrodiagonale, a mit der Axe des Prisma

coincidirend. Axenwinkel für Roth kleiner als für Blau. Trotz dieser verschiedenen Orientirung der Absorptions-Verhältnisse völlig übereinstimmend mit denen des Glimmers; nämlich

$$(\mathfrak{b} > \mathfrak{c}) > \mathfrak{a}$$
.

Wenn irgend ein Beweis, ausser den Krystallkanten, deren Messung trotz neuerer Arbeiten immer noch manches zweifelhaft lässt, für den nicht hexagonalen Charakter spricht, so ist es das Verhalten vor der dichroskopischen Loupe und im Polarisations-Apparate. Die Farbendifferenz zwischen ß und ç ist so entschieden, dass an dem Trichroismus nicht gezweifelt werden kann.

q hellbraun bis farblos,
b ölgrün in pistaziengrün,
c spargelgrün in schmutzig zeisiggrün.

35. Topas.
Taf. 3, Fig. 10.

Krystalle aus dem k. k. Hof-Mineralien-Cabinete.

Das Axenverhältniss ist nach v. Kokscharow (Materialien zur Min. Russlands, Bd. 2, S. 198):

a:b:c=1:0.52854:0.47698.

Wir fanden die Ebene der optischen Axen entsprechend den Beobachtungen und Messungen Brewster's, Biot's und Rudberg's in der Brachydiagonale, normal zur besten Spaltungsrichtung (001); erste Mittellinie parallel c, Charakter positiv, also Axenschema

Die Farbenverhältnisse sind durch Brewster und Haidinger studirt worden; wir fanden an zwei sibirischen Exemplaren:

- 1. Vom Flusse Urulga, Nertschinks; licht rauchbraun:
 - a bläulich meergrün,
 - · b nelkenbraun,
 - ç meergrün, fast wasserhell.

$$(\mathfrak{z} > \mathfrak{q} \mathfrak{c}).$$

- 2. Von Mursinsk, Ural; fast farblos, höchstens wie Euklas:
 - a schwach gelblich,
 - b schwach violet,
 - ç schwach himmelblau.

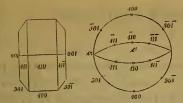
Deutliche Absorptionsdifferenzen nicht wahrnehmbar.

Ferner an zwei Brasilianern:

- 3. Von Rio Americanos, Cap. Minas Geraës. Seladongrüne Geschiebe, an denen aber die Orientirung sehr deutlich zu erhalten ist:
 - a berggrün bis berlinerblau,
 - b graulich bis bläulich,
 - ç bläulich.
 - 4. Von Boa Vista; Cap. Minas Geraës. Hellrosenrothe Krystalle:
 - a gelblichweiss bis wachsgelb,
 - b violblau,
 - ç violblau bis karmesinroth.

Die Intensitätsverhältnisse sind wegen der lebhaften Farben nicht mehr abzuschätzen.

Geschnittene Steine sind schon durch die dichroskopische Loupe allein zu unterscheiden. Der Trichroismus trennt sie scharf von der verwandten gleichfarbigen dichromatischen oder monochromatischen Gemmen.


36. Chrysoberyll.

Taf. 4, Fig. 10.

Krystalle aus dem k. k. Hof-Mineralien-Cabinete.

Axenverhältniss a : b : c = 1 : 0.58 : 0.47.

Die Ebeue der optischen Axen in den brachydiagonalen Hauptschnitten der herrschenden Prismenzone; die Zonenaxe erste

Mittellinie. Charakter positiv, also c parallel b und Axenschema

bça.

Wirklicher Axenwinkel nach Soret 27°51',

was nach dem von Brewster gemessenen mittleren Brechungsquotienten 50° 7′ für den scheinbaren Winkel in der Luft gibt.

Die spargelgrünen Varietäten aus Brasilien zeigen

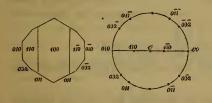
a gelblich his orange;

ğ hell, farblos oder schwachgrünlich oder röthlich, vermuthlich mehr durch den Gegensatz der Bilder a und ç;

ç spargelgrün

$$\varsigma > \mathfrak{g} > \mathfrak{h}.$$

37. Euchroit $4 \text{ CuO}, \text{AsO}_5 + 7 \text{HO}$.


Taf. 4, Fig. 9.

Krystalle aus dem k. k. Hof-Mineralien-Cabinete.

Das Axenverhältniss ist bekanntlich a:b:c=1:0.963:0.586.

Die Ebene der optischen Axen liegt im Pauptschnitte a b; erste

Die Ebene der optischen Axen liegt im Pauptschnitte a b; erste Mittellinie ist die Normale auf das Pinakoid (100). Charakter inner-

halb des spitzen Winkels der optischen Axen positiv; also Axenschema

çab.

Scheinbarer Winkel der optischen Axen etwa wie beim Schwerspath.

Die Dispersion der optischen Axen nicht zu bestimmen wegen des durchaus vorherrschenden smaragdgrünen Tons im ganzen Bilde.

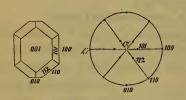
Dagegen deutliche Unterschiede in der Intensität des Farbentones wahrnehmbar, je nachdem die Vibrationen parallel der einen oder anderen Elasticitätsaxe sich fortpflanzen. Am meisten absorbirt werden die Strahlen, deren Schwingungen parallel α vor sich gehen, am wenigsten die parallel α gerichteten. Es ist somit im Euchroit ein Strahl um so mehr absorbirt, je weniger er abgelenkt wird und die Absorption ist ausgedrückt durch

38. Oxalsaures Ammoniak AmO, $C_2O_3 + HO$.

Taf. 5, Fig. 10.

Krystalle aus Professor Schrötter's Laboratorium.

Sie zeigen die von Rammelsberg beschriebene Form (Kr. Ch. 165, Fig. 202 und 203); wir fanden $p~a=37^{\circ}$ 48' (Brooke 37° 57', Rammelsberg 38° 14'); die Kantenwinkel der Prismenendfläche waren nicht genau zu ermitteln. Nach Brooke's Messungen ist


$$a:b:c=1:0.7799:0.7399;$$

es sind daher die untersuchten Krystalle eine Combination der Flächen von

$$p(110), b(100), o/2(112), q(101), c(001), a(010).$$

Unvollkommen spaltbar parallel (001).

Im Polarisationsmikroskope zeigen vier geschliffene Platten vollkommene homogene Structur.

Die Ebene der optischen Axen im makrodiagonalen Hauptschnitte erste Mittellinie in der Richtung von c.

Negativ: also α parallel c und das Axensymbol

cba.

Scheinbarer Axenwinkel sehr gross, über 100°.

Axenwinkel für Roth kleiner als für Blau. Doppelbrechung sehr energisch.

Die Krystalle verlängert in der Richtung der grössten Elasticitätsaxe.

39. Mellithsaures Ammoniak AmO, C₄O₃ + 3HO.

Taf. 5. Fig. 11; Taf. 7, Fig. 8, 9, 11.

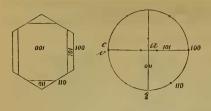
Krystalle aus Prof. Schrötter's Laboratorium.

Die Krystalle erscheinen in der Form sechsseitiger Säulen mit der Geradendfläche. Zuweilen finden sich die von Rammelsberg mit q und r bezeichneten beiden Pinakoide, aber stets nur sehr untergeordnet, kaum bemerkbar. An der Luft verwittern sie sehr rasch und es ist oft kaum möglich eine Messung am Reflexionsgonio-

meter auszuführen, da die Krystalle, wenn zu ihrer Einstellung nur wenige Minuten verwendet werden, die spiegelnde Oberfläche verlieren. Wir erhielten:

	G. Rose.	Rammelsberg.
(110) $(\overline{1}10) = 66^{\circ}10'$	650 44'	650 58'
(110) (100) = 570 6'	(570 8')	570 26'
$(100) (101) = 70^{\circ} 8'$	(700 24')	700 5'
$(011) (001) = 28^{\circ} 58'$	280 52'	

(Die eingeklammerten Zahlen sind berechnet.) Nach Gustav Rose's Messungen (mit welchen die unsern hinreichend stimmen) ist demnach


$$a:b:c=1:0.6461:0.3561$$
,

es ist somit

$$p(110), q(101), r(011), b(100), c(001).$$

Nach Rose und Rammelsberg sind die Krystalle nicht spaltbar; wir fanden jedoch, dass seukrecht zur Längenaxe der Säule leichter Blätter, d. i. parallel (001), zu erhalten sind, als nach jeder andern Richtung, selbst wenn die Säule durch mehrfaches Abspalten verkürzt und tafelförmig erscheint. Innere Structur gleichförmig.

Die Ebene der optischen Axen hat für die entgegengesetzten Enden des Spectrums eine verschiedene Lage. Während sie für Roth in den brachydiagonalen Hauptschnitt entfällt, liegt sie für Blau und Violet im Makrodiagonalschnitte; für Grün, das näher an Gelb als an Blau liegt, erscheint die Substanz bei gewöhnlicher Temperatur einaxig. Es ist also ungefähr die Erscheinung, die im schiefprismatischen Systeme von Brewster am Glauberit entdeckt wurde, oder welche wahrzunehmen ist, wenn Gypsplättchen, die senkrecht zu einer der ersten Mittellinien geschnitten sind, einer steigenden Temperatur ausgesetzt werden. An Krystallen des rhombischen Systems wurde diese Kreuzung ausser an dem von uns oben beschriebenen Brookit bisher noch nicht wahrgenommen; Sénarmont hat zwar analoge Erscheinungen durch das Zusammenkrystallisiren von verschiedenen Mengen von Kali und Ammoniakseignettesalz erzeugt: von einem solchen Erklärungsgrunde kann aber hier wohl nicht die Rede sein. Es ist eben ein Fall sehr beträchtlicher Dispersion der Axen: beim Durchgang durch den Nullwerth des Axenwinkels muss die Stellung der Axenebene nothwendig um 90° sich drehen.

Erste Mittellinie ist c. Negativ für alle Farben, also

bçα und çbα

Scheinbarer Axenwinkel: für Roth c 17%, für Blau c 20%; also die ganze scheinbare

Dispersion 37º.

Brechungsexponenten. Es wurden Prismen geschliffen parallel a und b. Beide zeigen die Bilder für welche die Vibrationen parallel zur brechenden Kante gerichtet sind mehr abgelenkt als die Bilder, für welche die Vibrationen senkrecht zur brechenden Kante vor sich gehen. Dies entspricht dem negativen Charakter der Krystalle.

1. Prisma mit der brechenden Kante parallel a:

Brechende Kante = $29^{\circ} 40'$, Einfallswinkel = $33^{\circ} 50'$.

Ablenkung Brechungsexponent (der Strahlen, deren Vibrationen parallel der brechenden Kante vor sich gehen):

Roth	170 40'	1.552
Grün	170 0'	1.563
Blau	180 15'	1.570

2. Prisma mit der brechenden Kante parallel b:

Brechende Kante = $26^{\circ} 45'$, Einfallswinkel = $16^{\circ} 42'$.

Ablenkung Brechungsexponent (der Strahlen, deren Vibrationen parallel b gerichtet sind):

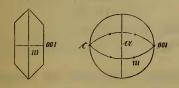
Roth 15° 30′ 1·550 Grün 15° 54′ 1·564 Blau 16° 6′ 1·572

Hieraus erhält man für die wirklichen Axenwinkel

$$AB = 11^{\circ}$$
 $AB^{\beta\lambda} = 12^{\circ} 40^{\circ}$

Wirkliche Dispersion = 23° 40'.

Alle von uns beobachteten Krystalle zeigen sich verlängert in der Richtung der grössten Elasticitätsaxe.


40. Essigsaures Nickeloxyd-Uranoxyd.

41. Essigsaures Kobalt-Uranoxyd.

42. Essigsaures Zinkoxyd-Uranoxyd.

$$a:b:c = \begin{cases} \text{Ni O, } \text{Ac } \text{O}_3 + \text{U}_2 \text{ O}_3, \text{ Ac } \text{O}_3 \\ \text{Co O, } \text{Ac } \text{O}_3 + \text{U}_2 \text{ O}_3, \text{ Ac } \text{O}_3 \\ \text{Zn O, } \text{Ac } \text{O}_3 + \text{U}_2 \text{ O}_3, \text{ Ac } \text{O}_3 \end{cases} = \begin{cases} 1:0.9494:0.8671 \\ 1:0.9580:0.8668 \\ 1:0.9140:0.8977 \end{cases}$$

Die Krystalle sind in der Regel gut ausgebildet und erlauben wegen der tafelförmigen Bildung durch die Verkürzung nach der Richtung der Axe c und wegen des Pinakoids (100) eine leichte und sichere Orientirung. Merkwürdig sind die Zwillingsbildungen, welche durch die optischen Verhältnisse erst recht offenkundig und verständlich werden. Ist nämlich aa die erste Krystallaxe des Hauptindividuums, a'a' die der eingelagerten hemitropen Platte, so stellt sich dem Auge die Erscheinung dar, wie es die Kreise in der Figur zeigen. Die optischen Axen A, B sind zum Theil gedeckt durch die Interferenzcurven, welche zu B' gehören und die je nach der Lage des Krystalles und nach der Dicke der Zwillingsschicht mehr oder weuiger vorherrschend werden können. Fig. 5 stellt einen vollständigen Zwilling dar, wie er aber wohl nie beobachtet wird; die gewöhnliche Form ist die der Fig. 4.

Die optischen Axen liegen in der Ebene der grössten und der kleinsten Krystallaxe. Erste Mittellinie ist a. Charakter negativ, also Axenschema

abc.

Der scheinbare Axenwinkel wächst vom Nickelsalz zum Kobalt — und zum Zinksalz. Das Kobalturanoxyd zeigt in Öl 64° 30′, in der Luft also 103° 38′.

Dispersion gering, $\rho < v$.

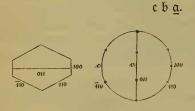
43. Essigsaures Magnesia-Uranoxyd.

MgO.
$$AcO_3 + U_2O_3$$
, AcO_3 .

44. Essigsaures Cadmiumoxyd-Uranoxyd.

CdO,
$$AcO_3 + U_2 O_3$$
, AO_3 .

Taf. 5, Fig. 6.


Krystalle von Herrn Ph. Weselsky.

$$a:b:c=\left(R=rac{Mg}{Cd}
ight)=\left\{egin{array}{ll} 1:0.6042:0.3960 \ 1:0.6289:0.3904 \end{array}
ight\}.$$

Die Krystalle zeigen gewöhnlich die Combination eines rhombischen Prisma mit dem Brachydoma.

Das Bestreben zu verwittern ist so gross, dass es kaum möglich ist die Präparate durch einige Tage zu erhalten; besonders empfindlich ist das Magnesiasalz, welches bei sorgfältigster Einkittung in ganz kurzer Zeit undurchsichtig wird.

Die optischen Axen liegen im makrodiagonalen Hauptschnitte des herrschenden Prisma. Erste Mittellinie die Prismenhauptaxe, welche die Richtung der kürzesten Krystallaxe ist. Charakter negativ; also Axenschema

Axenwinkel des Cadmiumsalzes für Roth 57° 54', für Blau 54° 24'.

Axenwinkel der Magnesiaverbindung für Roth 13°, für Blau 10° 30′.

Dispersion demnach für beide nicht unbeträchtlich; $\rho > v$.

Die Krystalle durchaus verlängert in der Richtung der grössten Elasticitätsaxe.

Ausgezeichnete grüne Fluorescenz; sie verliert sich mit dem Verwittern. (Vergl. optisch-krystallographische Untersuchungen.)

- 45. Weinsteinsaures Natron-Kali.
- 46. Traubensaures Natron-Kali.
- 47. Weinsteinsaures Natron-Ammoniak.
 - 48. Traubensaures Natron-Ammoniak.

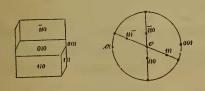
RO,
$$\overline{S} + \text{NaO} \cdot \overline{S} + 8 \text{HO}$$
.

Krystalle aus dem Laboratorium des Herrn Prof. Schrötter, sowie von Herrn Sectionsrath R. Haidinger aus der Böttger'schen Sendung.

Diese isomorphe Gruppe wurde durch Sénarmont untersucht (Ann. ph. ch. 1851, 33, 416 ff.). Seine Beobachtungen finden sich durch die unseren vollkommen bestätigt.

Setzt man entsprechend den Messungen von Kopp:

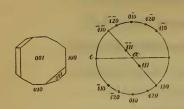
$$a:b:c=1:0.8317:0.4372$$
 für das erste,


$$a:b:c=1:0.8592:0.4378$$
 für das zweite Paar,

so werden die Symbole der von uns beobachteten Flächen

$$a(010), p/2(120), p(110), b(100), o(111), q(101) c(001).$$

Wir fanden an den Ammoniaksalzen undeutliche Spaltbarkeit nach (001), undeutlich wird sie durch den muschligen Bruch der Substanz, in welchen sie stellenweise übergeht.


Die Ebene der optischen Axen liegt im makrodiagonalen Hauptschnitte bei den Ammoniak-Verbindungen, im brachydiagonalen bei den Kali-Verbindungen.

Die erste Mittellinie fällt in den Ammoniak-Verbindungen mit c, in den Kaliverbindungen mit b zusammen. Der Charakter der Doppelbrechung ist für jene

negativ, für diese positiv; man erhält somit die Axensymbole

Vergl. die Gruppe RO, CO2.

Aus dieser Stellung der Elasticitätsaxen erklären sich auch die wundersamen Interferenzerscheinungen, welche Krystalle aus Gemengen von Kaliund Ammoniakseignette-Salzlösungen zeigen und

welche durch Sénarmont in der oft citirten ausgezeichneten Abhandlung über die optischen Eigenschaften isomorpher Verbindungen näher beschrieben wurden.

Für sämmtliche Glieder dieser isomorphen Gruppen ist der Axenwinkel für rothes Licht grösser als für blaues. Nach Herschel ist der wirkliche Axenwinkel für das erste Paar $AB_{\rho} = 76^{\circ}$ $AB_{v} = 56^{\circ}$. Nach Sénarmont für das zweite Paar $AB_{\rho} = 62^{\circ}$ $AB_{v} = 46^{\circ}$.

Die Krystalle sind meist verlängert in der Richtung der grössten Elasticitätsaxe.

49. Traubensaures Ammoniak AmO, $\overline{\mathrm{U}}+2\mathrm{HO}$.

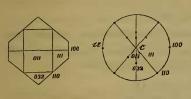
Taf. 5, Fig. 9.

Krystalle von H. Sect. R. Haidinger aus der Böttger'schen Sendung.

Wir fanden einen Prismenkantenwinkel = 98° 45′; ein darübergesetztes Makrodoma zeigte in der Scheitelkante c 96° (Kantenwinkel mit dem Anlegegoniometer erhalten). Es folgt hieraus, dass unsere Krystalle die Combination von p und $r^{3}/_{2}$ (Ramm. 324) sind, wozu noch die Abstumpfung b der spitzen Prismenkante tritt.

Die Krystalle sind unvollkommen durchsichtig, durch Risse und Zwillingsflächen zeolithähnlich. Die Oberfläche gestreift; Theilbarkeit nach einem Prisma (p oder $p/_2$); wegen der splittrigen Structur nicht genau angebbar.

Nach den genauen Messungen von de la Provostaye ist


$$a:b:c=1:0.8465:0.5086$$
,

und es sind die Flächen unserer Krystalle bezüglich dieses Axensystems

$$p(110), r^{3/2}(032), r(011) b(100).$$

Platten, welche senkrecht gegen die Längenaxe der Säule geschliffen und hierauf durch einige Augenblicke in Wasser getaucht

und wieder abgewischt und eingekittet worden waren, zeigen im Polarisationsmikroskop ein ziemlich gleichförmiges Feld mit unzähligen eingestreuten Zwillingsindividuen, begrenzt durch die Richtungen der Prismen (110), (210) und des Pinakoides (100). Im Ganzen zeigen sich diese zerstreuten Individuen in einem Gürtel eingeordnet,

der den sechsseitigen Umrissen von (110) (100) parallel liegt.

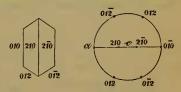
Die Ebene der optischen Axen fällt in den makrodiagonalen Hauptschnitt. Erste Mittellinie ist c. Positiv: also $\alpha \parallel \alpha$; es ist somit

Scheinbarer Axenwinkel: 66° 15′ grün, 64° 45′ roth in Öl, folglich $(AB)_{\rho} = 104$ °, 10′ $(AB)_{\nu} = 107$ ° 35°, beim Austritte in die Luft.

Die Krystalle sind verlängert nach der Richtung der kleinsten Elasticitätsaxe.

50. Äpfelsaurer Kalk CaO, $2\overline{M}$ + 9HO (?).

Krystalle aus der Böttger'schen Sendung von Herrn Sectionsrath W. Haidinger.


Wir fanden

(210) (210) = 55° 27' (genau),

(012) $(0\overline{12}) = 52^{\circ}$ ungefähr.

Die Flächen (012) sind gestreift, daher die Messung unsicher.

Die Ebene der optischen Axen steht rechtwinkelig auf der Zone (210), somit normal auf der kürzesten Krystallaxe; die erste Mittellinie halbirt den stumpfen Winkel des Prisma

(210), ist also parallel der Fläche (010). Charakter positiv.

Somit Axenschema

Scheinbarer Winkel der optischen Axen: Im Ölgefäss $(AB) \rho = 67^{\circ}$, $(AB) v = 65^{\circ} 23'$, also in der Luft $(AB) \rho = 109^{\circ}6'$, $(AB) v = 105^{\circ} 15'$.

Vorherrschende Dimension die Krystallaxe a, somit die Elasticitätsaxe c.

51. Äpfelsaures Ammoniak Am $0.2\overline{M} + HO.$

Taf. 6, Fig. 2.

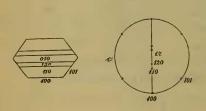
Krystalle aus der Böttger'schen Sendung und aus Prof. Schrötter's Laboratorium.

Keiner unserer Krystalle zeigt die von Pasteur studirte Hemimorphie, indem sie durchaus an beiden Enden gleichmässig ausgebildet auftreten. Wir fanden

$$p: p = 108^{\circ} 19'$$

 $q: b = 52^{\circ} 24'$.

Aus Rammelsberg's Messungen ergibt sich


$$a:b:c=1:0.7766:0.7230$$
,

und es sind die Symbole der von uns beobachteten Flächen

$$p(101)$$
, $q(110)$, $q/_2(120)$, $c(010)$, $b(100)$.

Ausgezeichnete Theilbarkeit nach (010), weit weniger deutlich nach (100); dagegen konnten wir keine Spaltbarkeit nach p (101), entdecken. Die ausgezeichnete Theilbarkeit nach c (010) wurde schon von Pasteur beobachtet.

Im Polarisations-Mikroskope zeigt sich die Substanz der Krystalle homogen. Merkwürdig ist die Form der Auflösungsfiguren, welche durch einen Tropfen Wasser, welcher einige Augenblicke auf dem Krystalle gelassen und dann abgewischt worden, erzeugt werden. Während nämlich an unseren Krystallen die Oktaëderflächen

und die Flächen des Makropinakoides überhaupt noch nicht beobachtet wurden, zeigen die mikroskopischen Höhlungen die Flächen der beiden Formen. Interessant ist das Vorkommen von klei-

neren Krystallen in den Krystallhöhlen.

Die Ebene der optischen Axen steht senkrecht auf der Theilungsfläche, im makrodiagonalen Hauptschnitte des Prisma p.

Erste Mittellinie parallel der mittleren Krystallaxe. Negativ, also

Scheinbarer Axenwinkel 75° 24' beim Austritte in die Luft.

Der Axenwinkel für Blau grösser als für Roth, obschon kaum zu unterscheiden.

Die Krystalle sind in der Regel tafelförmig; durch Verkürzung in der Richtung der mittleren Elasticitätsaxe.

52. Ameisensaurer Strontian SrO, $FoO_3 + 2HO$.

Taf. 6, Fig. 5.

Krystalle aus der Böttger'schen Sendung und aus Prof. Schrötter's Laboratorium.

Unsere Krystalle zeigen die von Heusser beschriebene Form, wir fanden

$$rr' = 62^{\circ} 29'$$

 $qq' = 61^{\circ} 30'$.

Es ist somit a:b:c=1:0.6065:0.5940, und der Symbole der Flächen werden

$$o(111)$$
, $o^2(211)$, $r(110)$, $q(101)$, $a(100)$.

Obschon nicht deutlich (nach Heusser gar nicht) spaltbar, lässt sich doch nach a und q der Krystall leichter theilen als nach anderen Richtungen; eine Wahrnehmung, welche durch die Härteverhältnisse bestätigt wird, da die Feile beim Anschleifen der Krystalle den grössten Widerstand erfährt, wenn sie senkrecht gegen die Zone aq geführt wird.

Ebene der optischen Axen fällt in die Kante q q', geht somit durch die mittlere und kleinste Krystallaxe.

Erste Mittellinie ist c. Negativ, also $a \parallel c$, und das Axenschema wird

bca.

Scheinbarer Axenwinkel 58° 58′ (Öl) also 92° 48′ in der Luft; der Winkel der Axen für rothes Licht kleiner als für violetes.

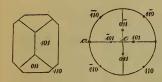
Die von uns beobachteten Krystalle sind verlängert in der Richtung der kleinsten krystallographischen, d. i. grössten Elasticitätsaxe: Kopp und Rammelsberg beschreiben auch Krystalle ohne vorherrschende Dimensionen.

53. Ameisensaurer Baryt BaO, FoO3.

Taf. 6, Fig. 6.

Krystalle von Herrn Sect. R. Haidinger aus der Böttger'schen Sendung. Wir fanden:

 $(101) (\overline{1}01) = 105^{\circ} 12^{!}5$


(101) $(10\overline{1}) = 74^{\circ} 42'$

 $(011) (0\overline{1}1) = 83^{\circ} 0'$

Diese Werthe stimmen fast vollständig mit den von Heusser gemessenen überein; es ist somit

$$a:b:c=1:0.8640:0.7650.$$

Unsere Krystalle zeigten in der Regel nur die Combination (101). (011). (100).

Die optischen Axen schliessen einen sehr grossen Winkel ein, desshalb fällt es auch schwer den Charakter der Elasticitätsaxen zu bestimmen. Durch das blosse Betrachten der centralen Partien des Gesichtsfeldes mittelst der compensirenden Platte (also

ohne Wahrne hmung der optischen Axen) liess sich entscheiden, dass die Ebene der optischen Axen senkrecht steht auf der Längenaxe des herrschenden Prisma; dass die grösste Elasticitätsaxe mit der grössten Krystallaxe coincidirt und dass der spitze Winkel der Axen wahrscheinlich durch die kleinste Elasticitätsaxe halbirt wird, da, obschon die Axenpunkte selbst nicht zugleich ins Gesichtsfeld zu bringen sind, dennoch beiderseits eine Anzahl von Ringen unzweifelhaft zu beobachten ist; dies wird sodann vollkommen bestätigt durch die Beobachtung im Ölgefäss. Hiernach wird das Axenschema

а в с.

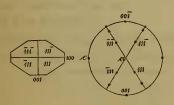
Scheinbarer Winkel der optischen Axen $(AB)\rho = 85^{\circ}$, $(AB)_{v} = 86^{\circ} 30'$ in Öl, also $(AB)\rho = 167^{\circ} 54$, $(AB)_{v} = 170^{\circ}$ in der Luft; es ist daher der Axenwinkel für Roth kleiner als für Violet.

54. Salpetersaures Anilin C₁₂ H₇ N, NO₅.

Taf. 4, Fig. 3, 4, 5.

Krystalle von Herrn Ph. Weselsky, ersten Adjuncten in Prof. Schrötter's Laboratorium.

Kleine, meist stark verzogene Krystalle. Fig. 5 stellt das gewöhnliche Vorkommen dar; Fig. 3 zeigt die auf die grösste Symmetrie reducirte Form derselhen. Meist nur die Flächen der rhombischen Pyramide, verzogen nach der Symmetrie des monoklinoëdrischen Systemes; die Flächen (001) häufiger als (100); letztere immer glänzend und eben, während die übrigen Krystallflächen keine so klaren Spiegel darbieten.


Wir erhielten durch die Untersuchung von 11 gut ausgebildeten Krystallen:

gemessen	berechnet
111.001 = 470 0'	470 9'
$111.100 = 67^{\circ} 5'$	
$111.\overline{1}11 = 45^{\circ}52'$	450 50'
$111.1\overline{1}1 = 77^{\circ} 8'$	760 49'
$111.11\overline{1} = 85^{\circ} 42'$	
$111.\overline{11}1 = 94^{\circ}25'$	940 18'
$100.001 = 90^{\circ} 0'$	900 0'

hieraus sich ergibt

$$a:b:c=1:0.6265:0.5723.$$

Die Krystalle sind ausgezeichnet blättrig nach (100). Höchstens Gypshärte.

Ebene der optischen Axen im makrodiagonalen Schnitte; erste Mittellinie in der Richtung der mittleren Krystallæxe. Die Normale auf der Ebene der vollkommensten Theilbar-

keit somit zweite Mittel-Linie.

Charakter innerhalb des spitzen Winkels der optischen Axen negativ; also Axenschema

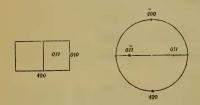
cab.

Es war wegen der unbequemen Theilbarkeit der kleinen Krystall-Individuen nicht möglich eine Platte herzustellen, welche die Messung des Axenwinkels erlaubt hätte. Doch ist der Axenwinkel für Roth kleiner als für Blau.

Die dichroskopische Loupe weist einen sehr ausgesprochenen Trichroismus nach:

Fläche (100):
$$\mathfrak{g}=$$
 hellviolet, $\mathfrak{g}=$ weingelb; Fläche (001): $\mathfrak{g}=$ grünlichgelb, $\mathfrak{g}=$ hellviolet, $\mathfrak{g}>\frac{\mathfrak{h}}{\mathfrak{g}}$.

Alle diese Farbentöne ziehen übrigens in Grau; am reinsten ist noch das Violet von q.


55. Schwefelsaures Brucin.

Taf. 6, Fig. 8.

Krystalle aus Professor Schrötter's Laboratorium.

$$b:c=1:0.8445.$$

Die Ebene der optischen Axen parallel dem Pinakoide (100),

erste Mittellinie ist parallel der Axe c. Weder über den Charakter noch über die sonstigen Verhältnisse ist aber etwas Bestimmtes zu ermitteln wegen der ausgezeichneten Spaltbarkeit nach (100)

und (010). Durch eine Domassäche betrachtet wird ein Axenbündel sichtbar mit deutlicher Dispersion; nach der Seite der rothen Axen zeigt sich der Krystall negativ, nach der der blauen positiv.

56. Anemonin
$$C_{15}H_{12}O_6$$
.

Taf. 6, Fig. 11, 12.

Aus Herrn Prof. Schrötter's Laboratorium.

Das Anemonin wurde bereits durch Professor Frankenheim gemessen (Rammelsberg 101); er beschreibt die Krystalle als Combinationen zweier Pinakoide mit den drei zusammengehörigen Prismen. Wir fanden aber bald Individuen, welche diesen Habitus entschieden nicht besitzen und wurden dadurch zu einer erneuten Untersuchung bewogen.

Unsere Krystalle sind meist ohne vorherrschende Dimensionen höchstens zum Tafelförmigen geneigt durch das Vorwiegen eines der drei Pinakoide. Doch auch diese halten sich meist das Gleichgewicht.

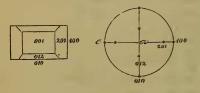
Wir unterschieden die Zonen

und die zwei Projectionen, Fig. 11, 12, stellen die bestausgebildeten Individuen dar, Fig. 12 zugleich das gewöhnliche Vorkommen.

Wir fanden:

```
durch Rechnung
                                 durch Messung
(100)(201) =
                 320 13'
                                   31º 30 'circa
(100) (110) =
                                   500 0' *
(100) (120) = 67^{\circ} 14'
(100) (111) = 660 8'
(100) (121) = 690 39'
(010) (012) =
                                   640 41 15 *
(010) (110) = 400 0'
(010) (120) = 22^{\circ}46'
                                   220 47'
(010) (111) = 53^{\circ}27'
                                   530 23 5
(010) (121) = 340 1'
                                   330 58'
(001) (201) = 570 47'
(001) (012) = 250 18!5
(001)(111) = 610 0'
(001)(121) =
                 640 1'
(012) (201) = 61^{\circ}11'
(012) (110) = 70^{\circ} 53'
(012) (120) = 66^{\circ} 47'
(012) (111) = 43^{\circ}40'
(012) (121) = 41^{\circ}25'
(201)(110) =
                 570 3'
(201) (120) = 70^{\circ} 53'
(201) (111) = 47014'
(201) (121) = 58^{\circ} 8'
(110) (120) = 170 14'
                                    170 1715
(110)(111) =
                 290 0'
(110)(121) =
                 590 9'
```

durch Rechnung	durch Messung
$(120) (111) = 56^{\circ} 39'$	
$(120) (121) = 25^{\circ} 19'$	
$\begin{array}{ccc} (111) & (121) = & 19^{\circ} 26' \\ \end{array}$	190 45'
$\begin{array}{ccc} (111) & (\bar{1}11) = & 470 44' \\ (144) & (4\bar{1}4) & & 720 6' \end{array}$	
$(111) (1\overline{1}1) = 73^{\circ} 6'$ $(111) (11\overline{1}) = 58^{\circ} 0'$	
$\begin{array}{ccc} (111) & (111) = & 30^{\circ} & 0 \\ (121) & (\overline{1}21) = & 40^{\circ} & 42' \end{array}$	
$(121) \ (1\overline{2}1) = 111^{\circ} 58'$	
$(121) (12\overline{1}) = 51^{\circ} 58'$	
$(110) (\overline{1}10) = 80^{\circ} 0'$	
$(012) \ (0\overline{12}) = 50^{\circ} 37'$	
$(201) (20\overline{1}) = 64^{\circ} 26'$	
$(120) \ (\overline{1}20) = 45^{\circ} 32'$	


Hieraus berechnet sich:

$$a:b:c=1:0.8390:0.3969.$$

Die Flächen (010) sind glänzend und eben; die Fläche (001) dagegen leicht gestreift parallel der Zone (001) (012).

Frankenheim fand als Winkel zwischen einer Brachydomaund Brachypinakoidfläche 67° 45°, zwischen einer Makrodoma- und Makropinakoid-Fläche 49° 26'.

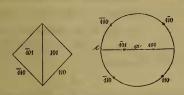
Diese Winkel lassen sich nicht wohl mit den unseren vereinbaren, obschon der erste an (100)(120), der zweite an (012)(012) erinnert.

Die Ebene der optischen Axen fällt in die Ebene der Axen ac, und es ist (001) senkrecht auf der ersten Mittellinie, welche, da der Charakter der Dop-

pelbrechung im spitzen Winkel der Axen negativ gefunden wird, die Axe der grössten Elasticität ist. Wir haben somit als Axenschema

cba.

Der Axenwinkel ist gross (eirca wie beim Topas); für Roth kleiner als für Blau.


57. Codeïn C₃₆H₂₁NO₆, HO+HO.

Taf. 6, Fig. 4.

Krystalle von Herrn Sectionsrath R. Haidinger.

Nach Miller:

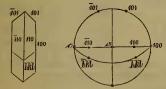
$$a:b:c=1:0.9601:0.8277.$$

Die Spaltungsrichtung, entsprechend Miller's Beobachtung, senkrecht auf der Axe c, also parallel (001). Diese Ebene ist zugleich senkrecht auf der ersten Mittellinie der

optischen Axen; die Ebene der letztern fällt in die Makrodiagonale des Prisma (110). Charakter negativ, also Axenschema

cba.

Scheinbarer Winkel der optischen Axen über 150° beim Austritt der Strahlen an die Luft; Dispersion der Axen unbedeutend; doch Axenwinkel für Roth kleiner als für Blau.


58. Bromisatin C₁₆H₄BrNO₄.

Taf. 6, Fig. 9.

Krystalle von H. Ph. Weselsky aus Herrn Prof. Schrötter's Laboratorium.

$$a:b:c=1:0.4585:0.4186.$$

Die Ebene der optischen Axen senkrecht auf der Pinakoidfläche,

parallel b; b zweite Mittellinie; Charakter im stumpfen Winkel der Axen positiv. Also Axenschema

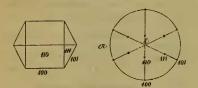
cab.

Die beiden Farbentone b ç

nahezu übereinstimmend, gelblich zimmtbraun; a dunkler reinbraun,

$$a > (s > b)$$
.

59. Terpentinölhydrat C20H16 + 6HO.


Taf. 5, Fig. 12.

Ausgezeichnete Exemplare aus Herrn Prof. Schrötter's Laboratorium.

$$a:b:c=1:0.8042:0.4717.$$

Ausgezeichnet theilbar nach 110.

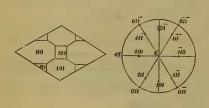
Die Ebene der optischen Axen fällt in den brachydiagonalen

Hauptschnitt des herrschenden Prisma; die Brachydiagonale b ist die erste Mittellinie; Charakter positiv; folglich Axenschema

bça.

Scheinbarer Winkel der optischen Axen 80° 12' in Öl; beim Austritt in die Luft, somit 143° 10'.

Dispersion und Doppelbrechung unbedeutend, doch Axenwinkel für Blau entschieden grösser als für Roth.


60. Citronensäure $3(C_4H_2O_4, HO) + HO$.

Taf. 6, Fig. 10.

Ausgezeichnete Krystalle, durch Herrn Emil Seybl uns zur Untersuchung überlassen.

Nach Heusser's Messungen ist

$$a:b:c=1:0.6016:0.4055.$$

Die optischen Axen liegen in der Ebene der grössten und mittleren Krystallaxe; die erste Mittellinie ist a, der Charakter innerhalb des spitzen Winkels der Axen positiv. Dies stimmt mit den Be-

obachtungen Brewster's; es ist somit das Axenschema

çab.

Scheinbarer Axenwinkel gross, ungefähr 120° (123° 30′ nach Brewster).

Dispersion gering: Axenwinkel für Roth kleiner als für Violet.

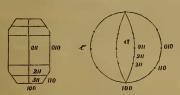
61. Citronensaures Natron NaO, $\bar{C} + 3HO$.

Taf. 6, Fig. 13.

Krystalle aus der Böttger'schen Sendung.

Es kommen vor die von Rammelsberg nach Heusser's Messungen mit a, p, $p^2/_3$, b, $o^4/_3$ und r bezeichneten Flächen, wir fanden:

	Heus	Rammelsberg	
	beobachtet	berechnet	
$(110) (1\overline{1}0) = 64^{\circ} 20'$		640 10'	
$(110) (010) = 32^{\circ} 12'$		320 5'	
(110)(320) = 110 11'	100 56'	110 6'	
$(320)(100) = 46^{\circ}36'$		460 46'	470 15'
(100)(311) = 550 0'		550 28'	
$(011) (0\overline{1}1) = 42^{\circ} 50'$	420 56'		420 55'


Hieraus erhalten wir für die Krystallaxen das Verhältniss:

$$a:b:c=1:0.6289:0.2446$$
,

und es wird

$$a(010), b(100), p(110), p\% (320), o\% (311), r(011).$$

Nach Heusser ist das eitronensaure Natron theilbar nach (010) und (100); wir fanden die Spaltbarkeit nach (010) höchst unsicher, dagegen ganz deutlich und leicht nachweisbar nach der

dritten Endfläche (001); nach (100) übereinstimmend mit Heusser.

Die Ebene der optischen Axen liegt im brachydiagonalen Haupt-

schnitte des Prisma 110, erste Mittellinie ist c.

Charakter negativ: also $c \parallel \alpha$ und es ist das Axensymbol

bca.

Axenwinkel gross.

Axenwinkel für rothes Licht kleiner als für blaues. Sehr kräftige Doppelbrechung.

Die Krystalle sind nach der Richtung der grössten Elasticitäts-Axe verlängert, nach der Richtung der kleinsten verkürzt; doch ohne dass Verlängerung oder Verkürzung sehr entschiedene Säulen- oder Plattenform erzeugte.

62. Mannit C6 H7 O6.

Taf. 6, Fig. 3.

Krystalle aus Herrn Prof. Schrötter's Laboratorium.

Nach Schabus ist:

$$a:b:c=1:0.5200:0.4718.$$

Die ausgezeichnete Spaltbarkeit nach (100) sowie die nadelförmige Bildung nach der Axe b diente zur Orientirung.

Die Axenebene rechtwinklig zur Fläche der ausgezeichneten

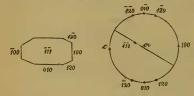
Spaltbarkeit und zur Länge des Prisma (101). Erste Mittellinie senkrecht auf der Spaltungsrichtung Charakter negativ. Dies gibt als Axenschema:

abc.

Scheinbarer Winkel der optischen Axen circa 100°.

Dispersion und Doppelbrechung unbedeutend. Axenwinkel für Roth kaum merklich kleiner als für Blau.

63. Milchzucker C₁₂H₁₂O₁₂.


Taf. 6, Fig. 7.

Krystalle von Herrn Dr. Lieben.

Nach Schabus:

$$a:b:c=1:0.6092:0.3520.$$

Unsere Krystalle sind zu uneben, um eine Orientirung durch Kantenmessung zu gestatten; die Entwickelung der höchst eigenthümlichen

hemimorphen - hemiëdrischen Combination reicht aber zu diesem Zwecke ganz gut aus. Nach Schabus spaltbar nach (010); wir fanden die Spaltbarkeit nach dieser Richtung übertroffen

durch die nach der Richtung (001) und es scheint selbst, dass die Blättrigkeit nach (010) mehr einem parallelen Aneinanderlagern der Individuen nach dieser Fläche als einer eigentlichen Spaltbarkeit zuzuschreiben ist. Der Spaltbarkeit nach (001) dankt man die Möglichkeit Platten zu erhalten, welche die beiden optischen Axen zeigen, weil die spröden und krümligen Krystallchen dem eigentlichen Anschleifen auf eine unangenehme Weise widerstehen.

Das Axenschema wird nach unserer Orientirung, welche die Axenebene parallel (010), die erste Mittellinie senkrecht auf (001), den Charakter negativ gibt

cba.

Scheinbarer Winkel der optischen Axen circa 40°. Dispersion der Axen sehr deutlich, Axenwinkel für Blau kleiner als für Roth; Doppelbrechung unbedeutend.

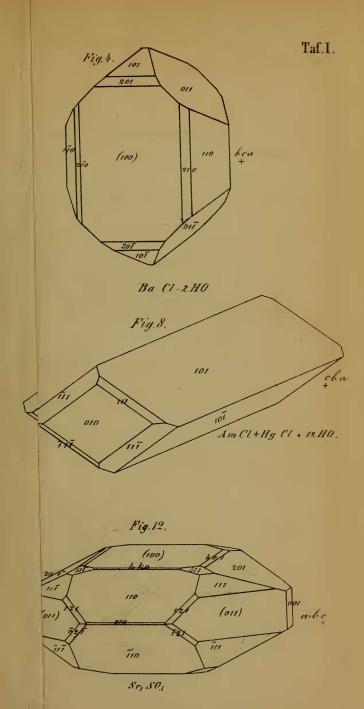
Wir schliessen hier die Aufzählung der von uns untersuchten Krystalle, um bald eine weitere Reihe folgen zu lassen. Da wir übrigens, trotz der gefälligen Unterstützung von Seiten mehrerer Chemiker nicht in der Lage sind, alle bisher dargestellten rhombischen Krystalle zu erhalten, so richten wir an alle Besitzer solcher Präparate die freundliche Bitte, uns einige gut krystallisirte Exemplare solcher Krystalle übersenden zu wollen, welche in dieser Aufzählung nicht enthalten oder nur näherungsweise beschrieben sind. Wir werden dagegen gerne die geschliffenen und wohlverkitteten Platten den Einsendern zurückstellen. Denn nur aus einer möglichst vollständigen und genauen Untersuchung sind Resultate von allgemeiner Giltigkeit zu erwarten. Wir begnügen uns demnach, die gewonnenen Thatsachen in folgender Tabelle übersichtlich zu ordnen und werden in einem nächsten Abschnitte, der die Untersuchung derselben Substanzen nach einem neuen Gesichtspunkte enthalten soll, die allgemeinen Ergebnisse der gegenwärtigen Beobachtungsreihe zusammenstellen.

Substanz	Axenverhältniss a:b:c	Schema der Ela- sticitätsaxen	Dispersion der opt. Axen	Winkel der opt.Axenbeim Austritte in die Luft
1. Brookit	1:0.94438:0.84158	pac	ρ > υ	ρ=65° c γρ=10° c
2. BaCI + 2HO	1:0.6338:0.6068	bça	Disp. sehr gering ρ > υ	128º 6′
3. HgCl	1:0.9186:8.6664	<u>a</u> cb		
4. MgCl+2CdCl+12H0 5. NiCl+2CdCl+12H0 6. CoCl+2CdCl+12H0	1:0.9131:0.3040 1:0.9126:0.3431 1:0.9126:0.3431	abç	D. gering ρ > υ	136° 20′
7. KCl + HgCl +2H0) \(\) 1 : 0 \cdot 7751 : 0 \cdot 7143 \(\)	сБа	Dis. stark ρ > υ	kein Austre- ten wegen Totalrfix.
(8. AmCl+HgCl+2HO		çba	Dis. stark ρ < υ	79° 24′
9. KPtCy ₂ + HO + xHO	1:0.8795:0.2736	abç	Dis. stark ρ > υ	c 60°
10. SrPtCy ₂ +H0+2H0	1:0.7158:0.4447	baç	Dis. stark ρ < υ	
11. KLiPt ₂ Cy ₄ + 2HO	1:0.7173:0.3186	abç	ρ>υ	e 65°
12. KBr + TeBr ₂ + 3HO	1:0.9415:0.6857	cab	Dis. betr. ρ > υ	e 50°
13. NaO, S ₂ O ₅ + 2HO	1:0.9913:0.5999	açb		$ \rho = 126°38' \nu = 134°40' $
(14. KO, SO ₈	1:0.7464:0.5727	açb	Disp. sehr gering ρ < υ	100° 52′
(15. KO, CrO ₈	1:0.7297:0.5695	acb	ρ > υ	920

Winkel der opt. Axenbeim Austritte in	Dimensi	rschende ion, aus- at durch		keit, aus- kt durch	Farbe, Pleochroismus,
Öl	Krystall- axen	Elastici- tätsaxen	Krystall- axen	Elastici- tätsaxen	Absorption
		m. durch ung von c			a zimmtbraun, b nelkenbraun, c nelkenbraun $\phi > \phi > \phi$ d. i. $\phi > \phi > \phi$
75° 15′	a	Б	(100) (010) (001)	b c a	farblos
	а	α	ausgeze (110) unvollk (100)	(ca)	farblos
	a	α	undeutli (100)	eh naeh a	farblos gesättigt berggrün ç > å
78° 8′ 91°)				(nelkenbraun $b > c$
51° 25′	b	Б	keine m	erkliche	farblos
	c	c	keine m	erkliche	grünlich-weiss mit kräftiger violeter Fluorescenz
	c	С	keine me	erkliche	farblos mit kräftiger violeter Fluoresc.
	e	c	keine me	rkliche	morgenroth
•	Dimension Gleichge		keine m	erkliche	blutroth { c gelblich b rein roth } > c
$ \rho = 74^{\circ} 49' v = 77^{\circ} 27' $	c	ъ	(110)	(ac)	farblos
100	e	ъ	undeutl. (100) (010)	nach a c	farblos; in unreinen grünlichen Krystallen \$\beta > \beta \text{f}\$ goldgelb, Pleochroismus kaum wahrnehmbar doch \$\beta > \beta \text{f}\$

Substanz	Axenverhältniss a:b:c	Schema der Ela- sticitätsaxen	Dispersion der opt. Axen	Winkel der opt.Axenbeim Austritte in die Luft
$(16. \text{ MgO}, \text{SO}_3 + 7\text{HO})$	1:0.9901:0.5709			(56° 50′
$17. \text{ ZnO}, \text{SO}_3 + 7\text{HO}$	1:0.9804:0.5631	acb	D. gering ρ < υ	64° 18′
(18. MgO, CrO ₃ + 7HO	1:0.9901:0.5735)	H	7	c 70°
19. CaO, SO ₃	1:0.9943:0.8895 1:0.7489:0.5958	abç bça	ρ < υ	$ \rho = 70^{\circ} 18' v = 72^{\circ} 42' $
20. BaO, SO ₃	1:0.7622:0.6208	abç	ρ < υ	$ \begin{array}{c} \rho = 62^{\circ} \ 25' \\ \beta = 65^{\circ} \ 50' \end{array} $
21. Sr0, SO ₃	1:0.7794:0.6086	abç	ρ < υ	e 100°
22. Pb0,S0 ₃	1:0.77556:0.60894	abç	ρ < υ	kein Austre- ten wegen Totalrflx.
23. $AmO, 5BO_3 + 8HO$	1:0.9827:0.8101	açb	ρ < υ	$ \begin{vmatrix} \rho = 46^{\circ} 30' \\ \beta = 48^{\circ} 24' \end{vmatrix} $
/24. Sr0, CO ₂	1:0.7212:0.6089	cab	p < v	10° 30′
25. CaO, CO ₂	1:0.7207:0.6291	cab	ρ < υ	$ \rho = 30^{\circ} 40' v = 31^{\circ} 35' $
26. BaO, CO ₂	1:0.741:0.595	bac	ρ > υ	c 20°
\27. Pb0,C0 ₂	1:0.7232:0.6102	bac	Dis. betr ρ > υ	$\beta = 19^{\circ} 31' \\ \beta = 17^{\circ} 0'$
28. KO,NO ₅	1:0.7028:0.5843	cab	Dis. betr ρ < υ	$ \begin{array}{c} \rho = 6^{\circ} 15' \\ \beta = 8^{\circ} 45' \end{array} $

	Varia	ashor la			
Winkel der opt. Axen beim Austritte in	Dimensi	schende on, aus- et durch		keit, aus- kt durch	Farbe, Pleochroismus,
Öl	Krystall- axen	Elastici- tätsaxen	Krystall- axen	Elastici- tätsaxen	Absorption
)			(farblos
· 3	e l	Б	(100)	a {	farblos
)			(braungelb, Pleochroism. kaum wahrnehmbar
	b a	6 6		eichnet a, b, c	farblos oder rosenröthlich bis fleischfarben perlgrau $\mathfrak{c}>\mathfrak{h}>\mathfrak{q}$
	b	Б	vollko (011) (100)	mmen (bc) a	farblos oder a schwachröthl. b gelb oder grün c violet
·	be, b, e	ba, b, c	minder (011) (100)	vollkom. (bc) a	farblos oder bläulichgrau, him- melblau, schwachröthlich
96° 35°	b bisweile a, c	b en auch a, c	unvollk (011) (100)	ommen (bc) a	farblos
	Gleichg	gewicht	Spure (001)	n nach b	farblos
	ь, е	a, b	(101)	(bc)	farblos oder schwach gelblich braun $\mathfrak{q}>(\mathfrak{h}>\mathfrak{c})$
-	b, e	a, b	unvollk (101)	ommen (bc)	farblos oder schwach gelblich, röthlich, grünlich; an dem Horschenzer Krystalle ç > a coraniengelb, aschwefelgelb
	Gleichg	ewicht		•	farblos
$ \rho = 13^{\circ} 35' \\ \beta = 11^{\circ} 30' $	Dim. m Gleichg b		(101)	б, с	farblos und braun, gelblich, röthlich, grünlich.
	b, c	a, b	unvollk (100) (101)	ommen c (cb)	farblos.


Substanz	Axenverhältniss a:b:c	Schema der Ela- sticitätsaxen	Dispersion der opt. Axen	Winkel der opt.Axenbeim Austritte in die Luft
29. U ₂ O ₃ , NO ₅ + 6HO	1:0.8737:0.6088	baç	ρ < υ	67° 6′
30. Galmei	1:0.7827:0.483	abç	Dis. betr. $\rho > \upsilon$	e 70°
	1 1			
31. Muscowit		in der onale	$\rho > 0$	560-770
	}	Axenebene in der Makrodiagonale		
32. Margarit		Axen	$\rho > 0$	e 100°
33. Lepidolith	•	n der onale	$\rho > \sigma$	51º 50′
	<	Axenebene in der Brachydiagonale		
34. Chlorit	,	Axen Brach	ρ < υ	150
	1 100			
35. Topas	1:0.52854:0.47698	baç	ρ > υ	B = 98° 30′ H = 97° 50′
	1 1 1		- 6	Rudberg
36. Chrysoberyll	1:0.58 :0.47	bça		500 7/
		+"		
			- 8	
WEEKLE.	1 1 1 1			92
37. Euchroit	1:0.963 :0.586	çab		60°—70°
38. AmO, C ₂ O ₃ + HO	1:0.7799:0.7399	cba	ρ < υ	über 100°

Winkel der opt. Axen beim Austritte in	Dimensi	schende on, aus- it durch		keit, aus- ct durch	Farbe, Pleochroismus,
Öl	Krystall- axen	Elastici- tätsaxen	Krystall- axen	Elastici- tätsaxen	Absorption
45° 15′	b, e	α, c	unde	utlich	schwefelgelb, kein Pleochr.
wi.	c, b	с, в	ausgeze (110) unvollk (001)	(ab)	farblos, oder wenn gefärbt, so klein krystallinisch und un- vollkommen durchsichtig, dass Pleochroismus nicht zu bemerken ist
-917		10			bräunlich (β > ς) > α 6, c dunkelbraunroth α nahezu wasserhell
		b, c	ausgez	eichnet/ a	farblos
)				rosenroth, farblos, braun \mathfrak{b} schwefelgelb bislichtbraun \mathfrak{c} schwefelgelb bis braun \mathfrak{a} farblos bis bräunlich $(\mathfrak{b} > \mathfrak{c}) > \mathfrak{q}$
		ь, с	ausgez •	eichnet a	pistaziengrün bis braun (β> c) > q. α hellbraun bis farblos b ölgrün in pistaziengrün c spargelgrün in zeisiggrün
	c	c	(001)	с	farblos bis goldgelb, braun, rosenroth, entenblau, meer- grün. Entschiedener Pleo- chroismus, jedoch verschie- den, je nach der Färbung
	jedoch förm. na od. platt	schende uweilen säulen- ch b == c enförm. Verkür-	(100) (001)	δ α	spargelgrün, als Alexandrit tief smaragdgrün; die spargelgrünen Varietäten aus Brasilien zeigen: a gelblich bis orange b hell farblos c spargelgrün $(\mathfrak{c}>\mathfrak{g})>\mathfrak{h}$
1	Gleichg	ewicht	under	ıtlich	smaragdgrün a > b > ç
	e	α	unvollk (001)	ommen a	farblos

Substanz	Axenverhältniss a:b:c	Schema der Ela- sticitätsaxen	Dispersion der opt. Axen	Winkel der opt. Axen beim Austritte in die Luft
39. AmO, C ₄ O ₃ + 3HO	1:0.6361:0.3561	bç <u>a</u> çb <u>a</u>	ρ < υ D. 23 ° 40′	$ \rho = -17^{\circ} $ $ v = 20^{\circ} $
$(40. \text{ NiO}, \text{AcO}_3 + \text{U}_2\text{O}_3, \text{AcO}_3)$	1:0.9494:0.8671			(c 100°
41. $CoO, AcO_3 + U_2O_3, AcO_3$	1:0.9580:0.8668	abc	D. gering ρ < υ	103° 38′
42. ZnO, AcO ₃ + U ₂ O ₃ , AcO ₃				c 110°
43. MgO,AcO ₃ + U ₂ O ₃ ,AcO ₃ 44. CdO,AcO ₃ + U ₂ O ₃ ,AcO ₂	*}	cba	ho>v	$ \rho = 13^{\circ} v = 10^{\circ} 30' \rho = 57^{\circ} 54' v = 54^{\circ} 24' $
/45. KO, \overline{T} +NaO, \overline{T} +8HO 46. KO, \overline{U} +NaO \overline{U} +8HO	1:0.8317:0.4372	bça	Disp. 20° ρ > υ	ρ=133° 26′ υ=89°24′ Η
47. Am0, \overline{T} + Na0, \overline{T} + 8H0 48. Am0, \overline{U} + Na0 \overline{U} + 8H0	1:0.8592:0.4378	cba	Disp. 16° ρ > υ	$\rho = 100^{\circ}$ $v = 70^{\circ}$ S
49. AmO, U + 2HO	1:0.8465:0.5086	abç	c > 9	$ \rho = 104°10' \nu = 107°35' $
50. CaO,2M+9HO	1:0.9477:0.8922	çab	ρ > υ	$ \rho = 109 ° 6' \nu = 105 ° 15' $
51. AmO, 2M + HO	1:0.7766:0.7230	bac	D. gering ρ < υ	75° 24′
52. SrO, FoO ₃ + 2HO	1:0.6065:0.5949	bea	ρ < υ	92° 48′
53. BaO, FoO ₃	1:0.8638:0.7650	abç	ρ < υ	$\rho = 167^{\circ}54'$ $v = 170^{\circ}$
54. Anilin, NO ₅	1:0.6265:0.5724	cab	ρ < υ	1

Winkel der opt. Axen beim Austritte in	Vorherrschende Dimension, aus- gedrückt durch		Theilbarkeit, aus- gedrückt durch		Farbe, Pleochroismus, Absorption	
Öl	Krystall- axen	Elastici- tätsaxen	Krystall- axen	Elastici- tätsaxen	Absorption	
	e	α	sehr u kom (001)	involl- men	farblos	
					smaragdgrün ç > ½ schwache Unterschiede	
640 30'	a, b	a, b	unde	undeutlich digrün $\beta > c > a$ schwad Unterschiede		
)			schwefelgelb \$\alpha > \beta > \gamma kaum merklich		
	c	α	nicht d	eutlich	goldgelb mit licht smaragd- grüner Fluoresc. ohne deut- lichen Pleochroismus	
THE STATE OF	1		-11-	1	Charles and the	
	c	α	nicht d	 eutlich 	farblos	
	c	α	nicht d	leutlich	farblos	
$ \rho = 66^{\circ} 15' \\ \nu = 64^{\circ} 45' $	c	c	under (110)	utlich . (ab)	farblos	
$ \rho = 67^{\circ} $ $ \upsilon = 65^{\circ} 23' $	a	С	(010)	α	farblos	
	b, c	a, c	ausgez (010)	eichnet a	farblos	
580 58	c	α	nicht d	leutlich	farblos	
$\rho = 85^{\circ}$ $\nu = 86^{\circ} 30'$	ь	б	(110)	(a, b)	farblos	
	Gleichg	zewicht	ausgez (100)	 eichnet c	röthlichgrau a grünlichgelb b hellviolet c weingelb g>	

Substanz	Axenverhältniss a:b:c	Schema der Ela- sticitäfsaxen get obt. Axen	Winkel der opt.Axenbeim Austritte in die Luft
55. Bruein, SO ₃	x:1:0·8445	1. Mittell. c 2. Mittell. b	
56. Anemonin	1:0.8390:0.3969	$\left cba \right ho < v$	$\rho = 78^{\circ}$ $v = 81^{\circ} 30'$
57. Codein	1:0.9601:0.8277	cba D. gering ρ < υ	über 150°
58. Bromisatin	1:0.4585:0.4186	cab .	
59. Terpentinöl-Hydrat	1:0.8042:0.4717	$\left \begin{array}{c} \mathfrak{b}_{\mathfrak{C}\mathfrak{A}} \\ \mathfrak{p} \\ \rho < \mathfrak{v} \end{array}\right $	143° 10′
60. Citronensäure	1:0.6016:0.4055	$\begin{vmatrix} \cos p & \text{cab} \\ \cos p & \cos p \end{vmatrix}$	123° 20′ Br.
61. NaO, C+3HO	1:0.6289:0.2446	beg $\rho < \upsilon$	е 100°
62. Mannit	1:0.5200:0.4718	abc p < v	e 100°
63. Milchzucker	1:0.6214:0.2188	cba p < v	e 40°

Lithu.ged i.d.k.k. Hofu. Steatsdruckerei.